Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 89(5): 2803-2813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551196

RESUMO

The impact of high hydrostatic pressure (HHP) on protein digestibility of egg yolk and egg yolk granule was evaluated by static in vitro digestion using the standardized INFOGEST 2.0 method. The degree of hydrolysis (DH) and the phospholipid content were determined during digestion, and the protein and peptide profiles were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse phase-high pressure liquid chromatography (RP-HPLC). The results showed that HHP induced protein aggregation in egg yolk and granule, mainly by disulfide bridges, which were not disrupted in the oral phase. Proteolysis during the gastric phase improved egg yolk and granule protein solubility, regardless of whether HHP was applied. However, the extent of the samples' digestibility was not affected, with DH values ranging from 15% to 20%. During the intestinal phase, the DH of egg yolk protein (∼40%) was higher than that of the granule (∼25%), probably due to the denser structure of the granule reducing the accessibility of intestinal enzymes. The DH, peptide, and protein profiles of control and HHP-treated egg yolk showed similar protein digestion behaviors for both gastric and intestinal phases. Among the different proteins, only the digestibility of ß-phosvitin in HHP-treated granule was enhanced. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin with the potential to generate bioactive phosvitin-derived phosphopeptides. PRACTICAL APPLICATION: High hydrostatic pressure, mainly used as a preservation process, did not impair the nutritional quality of the egg yolk and granule proteins but improved the susceptibility of phosvitin (protein contained in egg yolk) proteolysis to produce bioactive phosphopeptides. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin.


Assuntos
Digestão , Gema de Ovo , Pressão Hidrostática , Gema de Ovo/química , Hidrólise , Solubilidade , Fosvitina/química , Proteólise , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Manipulação de Alimentos/métodos , Animais , Eletroforese em Gel de Poliacrilamida , Galinhas , Fosfolipídeos/química , Fosfolipídeos/metabolismo
2.
Compr Rev Food Sci Food Saf ; 21(5): 4274-4293, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904187

RESUMO

High hydrostatic pressure (HHP) treatment induces structural changes in bovine milk proteins depending on factors such as the temperature, pH, concentration, decompression rate, cycling, composition of the medium and pressure level and duration. An in-depth understanding of the impact of these factors is important for controlling HHP-induced modification of milk proteins and the interactions within or between them, which can be applied to prevent undesired aggregation, gelation, and precipitation during HHP processing or to obtain specific milk protein modifications to attain specific protein properties. In this regard, understanding the influences of these factors can provide insight into the modulation and optimization of HHP conditions to attain specific milk protein structures. In recent years, there has been a great research attention on HHP-induced changes in milk proteins influenced by factors such as pH, temperature, concentration, cycling, decompression condition, and medium composition. Hence, to provide insight into how these factors control milk protein structures under HHP treatment and to understand if their effects depend on HHP parameters and environmental conditions, this review discusses recent findings on how various factors (pH, temperature, cycling, decompression rate, medium composition, and concentration) affect HHP-induced bovine milk protein modification. Practical Application: The information provided in this review will be very useful to anticipate the challenges related to the formulation and development of pressure-treated milk and dairy products.


Assuntos
Manipulação de Alimentos , Proteínas do Leite , Animais , Pressão Hidrostática , Leite , Proteínas do Leite/química
3.
Foods ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407046

RESUMO

Processing edible insects into protein extracts may improve consumer acceptability. However, a better understanding of the effects of food processing on the proteins is needed to facilitate their incorporation into food matrices. In this study, soluble proteins from Tenebrio molitor (10% w/v) were pressurized using high hydrostatic pressure (HHP) at 70-600 MPa for 5 min and compared to a non-pressurized control (0.1 MPa). Protein structural modifications were evaluated using turbidity measurement, particle-size distribution, intrinsic fluorescence, surface hydrophobicity, gel electrophoresis coupled with mass spectrometry, and transmission electron microscopy (TEM). The observed decrease in fluorescence intensity, shift in the maximum emission wavelength, and increase in surface hydrophobicity reflected the unfolding of mealworm proteins. The formation of large protein aggregates consisting mainly of hexamerin 2 and ⍺-amylase were confirmed by protein profiles on gel electrophoresis, dynamic light scattering, and TEM analysis. The typical aggregate shape and network observed by TEM after pressurization indicated the potential involvement of myosin and actin in aggregate formation, and these were detected by mass spectrometry. For the first time, the identification of mealworm proteins involved in protein aggregation phenomena under HHP was documented. This work is the first step in understanding the mealworm protein-protein interactions necessary for the development of innovative insect-based ingredients in food formulations.

4.
Foods ; 11(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35205989

RESUMO

Ultra-high pressure homogenization (UHPH) is a promising method for destabilizing and potentially improving the techno-functionality of the egg yolk granule. This study's objectives were to determine the impact of pressure level (50, 175 and 300 MPa) and number of passes (1 and 4) on the physico-chemical and structural properties of egg yolk granule and its subsequent fractions. UHPH induced restructuration of the granule through the formation of a large protein network, without impacting the proximate composition and protein profile in a single pass of up to 300 MPa. In addition, UHPH reduced the particle size distribution up to 175 MPa, to eventually form larger particles through enhanced protein-protein interactions at 300 MPa. Phosvitin, apovitellenin and apolipoprotein-B were specifically involved in these interactions. Overall, egg yolk granule remains highly stable during UHPH treatment. However, more investigations are needed to characterize the resulting protein network and to evaluate the techno-functional properties of UHPH-treated granule.

5.
Foods ; 10(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34441534

RESUMO

Despite its nutritional properties, buttermilk (BM) is still poorly valorized due to its high phospholipid (PL) concentration, impairing its techno-functional performance in dairy products. Therefore, the objective of this study was to investigate the impact of ultra-high-pressure homogenization (UHPH) on the techno-functional properties of BM in set and stirred yogurts. BM and skimmed milk (SM) were pretreated by conventional homogenization (15 MPa), high-pressure homogenization (HPH) (150 MPa), and UHPH (300 MPa) prior to yogurt production. Polyacrylamide gel electrophoresis (PAGE) analysis showed that UHPH promoted the formation of large covalently linked aggregates in BM. A more particulate gel microstructure was observed for set SM, while BM gels were finer and more homogeneous. These differences affected the water holding capacity (WHC), which was higher for BM, while a decrease in WHC was observed for SM yogurts with an increase in homogenization pressure. In stirred yogurts, the apparent viscosity was significantly higher for SM, and the pretreatment of BM with UHPH further reduced its viscosity. Overall, our results showed that UHPH could be used for modulating BM and SM yogurt texture properties. The use of UHPH on BM has great potential for lower-viscosity dairy applications (e.g., ready-to-drink yogurts) to deliver its health-promoting properties.

6.
Food Res Int ; 146: 110471, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34119244

RESUMO

The importance of various Lactobacillus strains and milk components, such as the milk fat globule membrane, has been studied from various perspectives and proven to have a positive role in human health. On one end, lactic acid bacteria produce metabolites with direct effect in the immune system, changes of pH in the gut, and antagonistic substances for pathogenic bacteria as well as competition. On the other end, the milk fat globule membrane improves gastrointestinal status by promoting cell proliferation, epithelial tight junction patterns, and development of intestinal epithelial cells. Interaction between beneficial bacteria and milk fat is a natural occurring phenomenon in dairy products; however, it has not been fully characterized. In this work, we studied the effect of milk phospholipids in the adhesion of Lactobacillus to mucus-producing Caco-2/Goblet cell co-cultures and found that treatment with phospholipids produced bacterial cells with increased surface electronegativity, which was correlated with increased bacterial cells adhered to the intestinal model. Moreover, we utilized an original means of characterizing the adhesion using quartz crystal microbalance. All strains studied, experienced modification of adhesion either physicochemical or kinetic parameters studied. Furthermore, by imaging bacterial cells by electron microscopy, we identified that some strains, such as L. acidophillus and L. casei, metabolized MPL, which improved their adhesion to hydrophilic surfaces such as gold. We identified another group of bacteria, such as L. delbrueckii and L. plantarum, that, instead of metabolizing MPL, kept the phospholipids bound irreversibly to the surface of the cell envelope thus decreasing their adherence to gold surfaces. One of the most important aspects of probiotic lactic acid bacteria -besides survival in the stomach-is the colonization and extended resident time in the intestine to effectively change the gut microbiome. We found that bacterial treatment with milk phospholipids enhances adhesion to intestinal models and will in turn, increase the residence time with the concomitant benefits to the consumer.


Assuntos
Lactobacillus , Fosfolipídeos , Aderência Bacteriana , Células CACO-2 , Glicolipídeos , Glicoproteínas , Células Caliciformes , Humanos , Gotículas Lipídicas , Muco
7.
Molecules ; 26(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445507

RESUMO

Inclusion of edible insects in human diets is increasingly promoted as a sustainable source of proteins with high nutritional value. While consumer acceptability remains the main challenge to their integration into Western food culture, the use of edible insects as meal and protein concentrate could decrease neophobia. The defatting of edible insects, mostly done with hexane, is the first step in producing protein ingredients. However, its impact on protein profiles and techno-functionality is still unclear. Consequently, this study compares the protein profiles of hexane-defatted and non-hexane-defatted yellow mealworm (Tenebrio molitor) meals and protein extracts, and evaluates the impact of hexane on protein solubility and foaming properties. Results showed that profiles for major proteins were similar between hexane-defatted and non-defatted samples, however some specific content differences (e.g., hexamerin 2) were observed and characterized using proteomic tools. Protein solubility was markedly lower for T. molitor meals compared to protein extracts. A large increase in the foaming capacity was observed for defatted fractions, whereas foam stability decreased similarly in all fractions. Consequently, although the hexane-defatting step was largely studied to produce edible insect protein ingredients, it is necessary to precisely understand its impact on their techno-functional properties for the development of food formulations.


Assuntos
Hexanos/farmacologia , Proteínas de Insetos/isolamento & purificação , Tenebrio/química , Animais , Eletroforese em Gel Bidimensional , Larva/efeitos dos fármacos , Solubilidade
8.
J Dairy Sci ; 104(2): 1531-1547, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33309347

RESUMO

The effects of pressure, temperature, shear, and their interactions on selected quality attributes and stability of milk during ultra-shear technology (UST) were investigated. The UST experiments include pressure (400 MPa) treatment of the milk sample preconditioned at 2 different initial temperatures (25°C and 15°C) and subsequently depressurizing it via a shear valve at 2 flow rates (low: 0.15-0.36 g/s; high: 1.11-1.22 g/s). Raw milk, high-pressure processed (HPP; 400 MPa, ~40°C for 0 and 3 min) and thermal treated (72°C for 15 s) milk samples served as the controls. The effect of different process parameters on milk quality attributes were evaluated using particle size, zeta potential, viscosity, pH, creaming, lipase activity, and protein profile. The HPP treatment did not cause apparent particle size reduction but increased the sample viscosity up to 3.08 mPa·s compared with 2.68 mPa·s for raw milk. Moreover, it produced varied effects on creaming and lipase activity depending on hold time. Thermal treatment induced slight reduction in particle size and creaming as compared with raw milk. The UST treatment at 35°C reduced the effective diameter of sample particles from 3,511.76 nm (raw milk) to 291.45 nm. This treatment also showed minimum relative lipase activity (29.93%) and kept milk stable by preventing creaming. The differential effects of pressure, shear, temperature, and their interactions were evident, which would be useful information for equipment developers and food processors interested in developing improved food processes for dairy beverages.


Assuntos
Manipulação de Alimentos , Leite/química , Animais , Feminino , Leite/normas , Tamanho da Partícula , Pressão , Temperatura , Viscosidade
9.
J Dairy Sci ; 103(9): 7939-7950, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622608

RESUMO

Despite extensive research on the topic, valorization of dairy by-products remains challenging. Cheese whey is of particular interest because it contains valuable proteins such as α-lactalbumin (α-LA) and ß-lactoglobulin (ß-LG). However, selective fractionation of these 2 proteins into pure fractions is complex because of their similar molecular weights. In this study, we proposed an innovative protein separation strategy based on coupling high hydrostatic pressure (HHP) with acidification of whey at pH 4.6. We investigated the effect of single-cycle HHP (600 MPa) for 5, 10, and 15 min and multiple-cycle HHP (1-3 cycles of 5 min at 600 MPa) on α-LA and ß-LG fractionation from cheese whey at initial pH (control, pH 6.66) and acidified to pH 4.6. All pressurization conditions with acidified whey induced a drastic aggregation of ß-LG compared with control whey. The highest degrees of purification (75 and 98%, respectively) and yields (95 and 88%, respectively) of α-LA and ß-LG were obtained with the application of single-cycle HHP treatment of acidified whey at pH 4.6 at 600 MPa for 5 min. Our results showed the strong potential of using HHP as an innovative tool for the fractionation of valuable proteins such as α-LA from cheese whey.


Assuntos
Queijo/análise , Lactalbumina/isolamento & purificação , Lactoglobulinas/isolamento & purificação , Soro do Leite/química , Fracionamento Químico , Pressão Hidrostática , Lactalbumina/química , Lactoglobulinas/química
10.
Food Chem ; 321: 126696, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247184

RESUMO

Egg yolk phosvitin is of particular interest due to its functional and biological properties. Recently, it was demonstrated that high hydrostatic pressure (HHP) (400 MPa for 5 min) induced the transfer of folic acid and phosvitin from the egg yolk granule to the plasma fraction. A granule fraction (Gin) produced by egg yolk centrifugation was pressure-treated at 400 and 600 MPa for 5 and 10 min, and centrifuged to generate granule fractions (GP1 to GP4) and plasmas (PP1 to PP4). Iron and phosphorus contents were also increased in PP1 to PP4 fractions, confirming the transfer of phosvitins from pressure-treated granule to plasma. Pressurization drastically improved phosvitin recovery in PP fractions, specifically at 600 MPa for 10 min, which had the highest value of phosvitin/100 mg of dry plasma at 33.3 ± 4.39 mg. Consequently, HHP represents an alternative approach for phosvitin transfer and recovery in the egg yolk soluble fraction.


Assuntos
Gema de Ovo/química , Fosvitina/química , Animais , Centrifugação , Fracionamento Químico , Galinhas , Ácido Fólico/química , Pressão Hidrostática , Fosvitina/isolamento & purificação
11.
Foods ; 8(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766306

RESUMO

Edible insects represent an interesting alternative source of protein for human consumption but the main hurdle facing the edible insect sector is low consumer acceptance. However, increased acceptance is anticipated when insects are incorporated as a processed ingredient, such as protein-rich powder, rather than presented whole. To produce edible insect fractions with high protein content, a defatting step is necessary. This study investigated the effects of six defatting methods (conventional solvents, three-phase partitioning, and supercritical CO2) on lipid extraction yield, fatty profiles, and protein extraction and purification of house cricket (Acheta domesticus) and mealworm (Tenebrio molitor) meals. Ethanol increased the lipid extraction yield (22.7%-28.8%), irrespective of the insect meal used or the extraction method applied. Supercritical CO2 gave similar lipid extraction yields as conventional methods for Tenebrio molitor (T. molitor) (22.1%) but was less efficient for Acheta domesticus (A. domesticus) (11.9%). The protein extraction yield ranged from 12.4% to 38.9% for A. domesticus, and from 11.9% to 39.3% for T. molitor, whereas purification rates ranged from 58.3% to 78.5% for A. domesticus and from 48.7% to 75.4% for T. molitor.

12.
Food Chem ; 275: 193-196, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724187

RESUMO

Fractionation of ß-lactoglubulin (ß-lg) and α-lactalbumin (α-la) using conventional separation technologies remains challenging mainly due to similar molecular weight. Herein, casein (CN) was used as ligand protein to specifically aggregate ß-lg under high hydrostatic pressure (HHP) in order to separate α-la after acidification to pH 4.6. Specifically, we studied the effect of different concentration of CN on α-la purity and recovery. Model solutions of α-la, ß-lg and CN (from 0 to 5 mg/mL) were pressurized (600 MPa-5 min). After acidification and centrifugation of pressure-treated solutions, purity of α-la was increased up to 78% with a recovery of 88% for solution without CN. In contrast with our initial hypothesis, the presence of CN decreased ß-lg pressure-induced aggregation and co-precipitation upon acidification and significantly reduced purity (∼71%). Therefore, our results suggest a chaperone-like activity of CN on ß-lg pressure-induced aggregation which needs further investigation.


Assuntos
Caseínas/metabolismo , Lactalbumina/isolamento & purificação , Lactoglobulinas/química , Caseínas/química , Centrifugação , Fracionamento Químico/métodos , Pressão Hidrostática , Lactalbumina/química , Lactalbumina/metabolismo , Pressão
13.
Food Res Int ; 115: 467-473, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599966

RESUMO

Exploration of innovative high hydrostatic pressure (HHP)-assisted enzymatic hydrolysis of plant based food proteins may help improve peptide yield and bioactivity of hydrolysates. In this study, we performed enzymatic hydrolysis of flaxseed proteins using trypsin under HHP (100 and 300 MPa for 5 and 10 min) to evaluate the effect of presurization on protein denaturation, degree of hydrolysis (DH), and peptide profile and bioactivity of hydrolysate. Spectrofluorimetric analyses showed that 300 MPa induced the maximum destablization of flaxseed protein structures. The same pressure level drastically improved the DH by 1.7 times as compared to that of control. Applying HHP did not modify the peptide profiles of flaxseed protein hydrolysates but their concentrations increased with severity of treatment. Similarly, peptide molecular weight distributions were affected by pressurization parameters, increasing mainly the relative abundance of 500-1500 Da peptides. Finally, pressurization at 300 MPa for 5 and 10 min improved the antioxidant activity of flaxseed protein hydrolysates by 39 and 55%, respectively, compared to the control.


Assuntos
Antioxidantes/química , Linho/química , Peptídeos/química , Proteínas de Plantas/química , Hidrolisados de Proteína/química , Proteólise , Pressão Hidrostática , Peso Molecular , Capacidade de Absorbância de Radicais de Oxigênio , Sementes/química , Tripsina/química
14.
J Agric Food Chem ; 67(4): 1269-1276, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30657676

RESUMO

The development of stable macromolecular structures with tailored functional properties in the dairy industry using innovative stabilizers is of great interest. The self-assembling peptide f1-8 (Pf1-8) derived from ß-lactoglobulin was found to interact with whey proteins, consequently changing their physicochemical properties. The objective of the present work was to evaluate the interaction between Pf1-8 and micellar casein (CN) and the changes in their physicochemical properties and stability at different pH values (6.6-2.6) on model solutions containing CN and Pf1-8 at various ratios (1:1, 5:1, and 10:1) using spectrofluorimetry, TEM, SEC-HPLC, and SDS-PAGE analyses. No CN precipitation occurred for the solution at the 1:1 ratio even at pH values below 4.6. In all samples, CN was completely dissociated to primary casein particles (PCP) to form stable supramolecular structures strongly bound to peptide gels via hydrophobic interactions. Thus, a novel milk-protein-derived peptide responsible for stabilizing complex structures composed of CN was discovered.


Assuntos
Caseínas/química , Lactoglobulinas/química , Substâncias Macromoleculares/química , Peptídeos/química , Animais , Bovinos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas
15.
J Dairy Sci ; 100(9): 7071-7082, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28647330

RESUMO

Ultrafiltration (UF) is largely used in the dairy industry to generate milk and whey protein concentrate for standardization of milk or production of dairy ingredients. Recently, it was demonstrated that high hydrostatic pressure (HHP) extended the shelf life of milk and improved rennet coagulation and cheese yield. Pressurization also modified casein micelle size distribution and promoted aggregation of whey proteins. These changes are likely to affect UF performance. Consequently, this study determined the effect of skim milk pressurization (300 and 600 MPa, 5 min) on UF performance in terms of permeate flux decline and fouling. The effect of HHP on milk proteins was first studied and UF was performed in total recycle mode at different transmembrane pressures to determine optimal UF operational parameters and to evaluate the effect of pressurization on critical and limiting fluxes. Ultrafiltration was also performed in concentration mode at a transmembrane pressure of 345 kPa for 130 or 140 min to evaluate the decline of permeate flux and to determine fouling resistances. It was observed that average casein micelle size decreased by 32 and 38%, whereas ß-lactoglobulin denaturation reached 30 and 70% at 300 and 600 MPa, respectively. These results were directly related to UF performance because initial permeate fluxes in total recycle mode decreased by 25% at 300 and 600 MPa compared with nonpressurized milk, critical flux, and limiting flux, which were lower during UF of milk treated with HHP. During UF in concentration mode, initial permeate fluxes were 30% lower at 300 and 600 MPa compared with the control, but the total flux decline was higher for nonpressurized milk (62%) compared with pressure-treated milk (30%). Fouling resistances were similar, whatever the treatment, except at 600 MPa where irreversible fouling was higher. Characterization of the fouling layer showed that caseins and ß-lactoglobulin were mainly involved in membrane fouling after UF of pressure-treated milk. Our results demonstrate that HHP treatment of skim milk drastically decreased UF performance.


Assuntos
Pressão Hidrostática , Proteínas do Leite/química , Leite/química , Ultrafiltração , Animais , Manipulação de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA