Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Clin Cancer Res ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573059

RESUMO

Tumors of the central nervous system (CNS) comprise the second most common group of neoplasms in childhood. The incidence of germline predisposition among children with brain tumors continues to grow as our knowledge on disease aetiology increases. Some children with brain tumors may present with non-malignant phenotypic features of specific syndromes (e.g. nevoid basal cell carcinoma syndrome, neurofibromatosis type 1 and type 2, DICER1 syndrome, and constitutional mismatch repair deficiency), while others may present with a strong family history of cancer (e.g. Li-Fraumeni syndrome), or with a rare tumor commonly found in the context of germline predisposition (e.g. rhabdoid tumor predisposition syndrome). Approximately 50% of patients with a brain tumor may be the first in a family identified to have a predisposition. The past decade has witnessed a rapid expansion in our molecular understanding of CNS tumors. A significant proportion of CNS tumors are now well characterized and known to harbor specific genetic changes that can be found in the germline. Additional novel predisposition syndromes are also being described. Identification of these germline syndromes in individual patients has not only enabled cascade testing of family members and early tumor surveillance but increasingly has also impacted cancer management in those patients. Therefore, the AACR Cancer Predisposition Working Group chose to highlight these advances in CNS tumor predisposition and summarize and/or generate surveillance recommendations for established and more recently emerging pediatric brain tumor predisposition syndromes.

3.
J Pediatr Hematol Oncol Nurs ; 41(2): 140-147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347731

RESUMO

Background: Genomic testing is an increasingly important technology within pediatric oncology that aids in cancer diagnosis, provides prognostic information, identifies therapeutic targets, and reveals underlying cancer predisposition. However, nurses lack basic knowledge of genomics and have limited self-assurance in using genomic information in their daily practice. This single-institution project was carried out at an academic pediatric cancer hospital in the United States with the aim to explore the barriers to achieving genomics literacy for pediatric oncology nurses. Method: This project assessed barriers to genomic education and preferences for receiving genomics education among pediatric oncology nurses, nurse practitioners, and physician assistants. An electronic survey with demographic questions and 15 genetics-focused questions was developed. The final survey instrument consisted of nine sections and was pilot-tested prior to administration. Data were analyzed using a ranking strategy, and five focus groups were conducted to capture more-nuanced information. The focus group sessions lasted 40 min to 1 hour and were recorded and transcribed. Results: Over 50% of respondents were uncomfortable with or felt unprepared to answer questions from patients and/or family members about genomics. This unease ranked as the top barrier to using genomic information in clinical practice. Discussion: These results reveal that most nurses require additional education to facilitate an understanding of genomics. This project lays the foundation to guide the development of a pediatric cancer genomics curriculum, which will enable the incorporation of genomics into nursing practice.


Assuntos
Genômica , Neoplasias , Humanos , Estados Unidos , Criança , Genômica/educação , Inquéritos e Questionários , Neoplasias/diagnóstico , Oncologia
4.
Genes Chromosomes Cancer ; 63(1): e23195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37548271

RESUMO

Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1) confers an increased risk of developing rhabdoid tumors and is caused by germline mutations in SMARCB1. RTPS1 should be evaluated in all individuals with rhabdoid tumor and is more likely in those with a young age at presentation (occasionally congenital presentation), multiple primary tumors, or a family history of rhabdoid tumor or RTPS1. Proband genetic testing is the standard method for diagnosing RTPS1. Most known RTPS1-related SMARCB1 gene mutations are copy number variants (CNVs) or single nucleotide variants/indels, but structural variant analysis (SVA) is not usually included in the molecular evaluation. Here, we report two children with RTPS1 presenting with atypical teratoid/rhabdoid tumor (ATRT) who had constitutional testing showing balanced chromosome translocations involving SMARCB1. Patient 1 is a 23-year-old female diagnosed with pineal region ATRT at 7 months who was found to have a de novo, constitutional t(16;22)(p13.3;q11.2). Patient 2 is a 24-month-old male diagnosed with a posterior fossa ATRT at 14 months, with subsequent testing showing a constitutional t(5;22)(q14.1;q11.23). These structural rearrangements have not been previously reported in RTPS1. While rare, these cases suggest that structural variants should be considered in the evaluation of children with rhabdoid tumors to provide more accurate genetic counseling on the risks of developing tumors, the need for surveillance, and the risks of passing the disorder on to future children. Further research is needed to understand the prevalence, clinical features, and tumor risks associated with RTPS1-related constitutional balanced translocations.


Assuntos
Neoplasias Encefálicas , Transtornos Cromossômicos , Tumor Rabdoide , Teratoma , Criança , Feminino , Masculino , Humanos , Adulto Jovem , Adulto , Lactente , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Neoplasias Encefálicas/genética , Mutação em Linhagem Germinativa , Translocação Genética , Teratoma/genética , Teratoma/patologia
5.
J Pers Med ; 13(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38138883

RESUMO

Genomic testing is becoming increasingly common in the care of pediatric patients with cancer. Parental understanding of germline results and their intent and timing of results disclosure to their child and family may have significant implications on the family unit. The purpose of this study was to examine parental understanding of germline genomic results and plans for disclosure to their child and other relatives. Semi-structured interviews were conducted with 64 parents of children with cancer, approximately eight weeks after parents had received their child's results. Parents of children with negative results (n = 20), positive results (n = 15), or variants of uncertain significance (n = 29), were interviewed. Fifty-three parents (83%) correctly identified their child's results as negative, uncertain, or positive. Most parents had disclosed results to family members; however, only 11 parents (17%) acknowledged discussing results with their child. Most parents delayed disclosure due to the young age of their child at the time of testing. In summary, most parents appropriately described their child's germline genomic results, yet few discussed the results with their child due to age. Families should be followed with supportive counseling to assist parents in the timing and content of result disclosure to their children.

6.
JCO Precis Oncol ; 7: e2300159, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37944075

RESUMO

PURPOSE: To characterize parents' quality of life (QoL) after germline genomic sequencing for their children with cancer. METHODS: Participants were n = 104 parents of children with cancer enrolled in a prospective study of clinical tumor and germline genomic sequencing. Parents completed surveys at study consent (T0), before disclosure of their child's germline results (T1), and again ≥5 weeks after results disclosure (T2). Bivariate associations with QoL were examined, followed by a multivariable regression model predicting parents' psychological distress. RESULTS: At T2, parental distress significantly differed by their children's germline result type (positive, uncertain, negative; P = .038), parent relationship status (P = .04), predisclosure genetics knowledge (P = .006), and predisclosure worry about sequencing (P < .001). Specifically, parents of children with positive (ie, pathogenic or likely pathogenic) results experienced greater distress than those of children with negative results (P = .029), as did parents who were single, more knowledgeable about genetics, and with greater worry. In the adjusted regression model, a positive germline result remained significantly associated with parents' lower QoL at T2 follow-up (F [4,92] = 9.95; P < .001; R2 = .30; ß = .19; P = .031). CONCLUSION: Germline genomic sequencing for children with cancer is associated with distress among parents when revealing an underlying cancer predisposition among their affected children. Genetic education and counseling before and after germline sequencing may help attenuate this impact on QoL by addressing parents' concerns about test results and their health implications. Assessing parents' worry early in the testing process may also aid in identifying those most likely in need of psychosocial support.


Assuntos
Neoplasias , Qualidade de Vida , Criança , Humanos , Qualidade de Vida/psicologia , Revelação , Estudos Prospectivos , Pais/psicologia , Neoplasias/genética , Células Germinativas
7.
Clin Cancer Res ; 29(7): 1243-1251, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693186

RESUMO

PURPOSE: Clinical genomic sequencing of pediatric tumors is increasingly uncovering pathogenic variants in adult-onset cancer predisposition genes (aoCPG). Nevertheless, it remains poorly understood how often aoCPG variants are of germline origin and whether they influence tumor molecular profiles and/or clinical care. In this study, we examined the prevalence, spectrum, and impacts of aoCPG variants on tumor genomic features and patient management at our institution. EXPERIMENTAL DESIGN: This is a retrospective study of 1,018 children with cancer who underwent clinical genomic sequencing of their tumors. Tumor genomic data were queried for pathogenic variants affecting 24 preselected aoCPGs. Available tumor whole-genome sequencing (WGS) data were evaluated for second hit mutations, loss of heterozygosity (LOH), DNA mutational signatures, and homologous recombination deficiency (HRD). Patients whose tumors harbored one or more pathogenic aoCPG variants underwent subsequent germline testing based on hereditary cancer evaluation and family or provider preference. RESULTS: Thirty-three patients (3%) had tumors harboring pathogenic variants affecting one or more aoCPGs. Among 21 tumors with sufficient WGS sequencing data, six (29%) harbored a second hit or LOH affecting the remaining aoCPG allele with four of these six tumors (67%) also exhibiting a DNA mutational signature consistent with the altered aoCPG. Two additional tumors demonstrated HRD, of uncertain relation to the identified aoCPG variant. Twenty-one of 26 patients (81%) completing germline testing were positive for the aoCPG variant in the germline. All germline-positive patients were counseled regarding future cancer risks, surveillance, and risk-reducing measures. No patients had immediate cancer therapy changed due to aoCPG data. CONCLUSIONS: AoCPG variants are rare in pediatric tumors; however, many originate in the germline. Almost one third of tumor aoCPG variants examined exhibited a second hit and/or conferred an abnormal DNA mutational profile suggesting a role in tumor formation. aoCPG information aids in cancer risk prediction but is not commonly used to alter the treatment of pediatric cancers.


Assuntos
Predisposição Genética para Doença , Neoplasias , Criança , Adulto , Humanos , Estudos Retrospectivos , Prevalência , Neoplasias/epidemiologia , Neoplasias/genética , Sequenciamento Completo do Genoma , Mutação em Linhagem Germinativa
8.
Nat Med ; 28(1): 125-135, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34992263

RESUMO

Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion-deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10-100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in 'immunologically cold' tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Reparo do DNA/genética , Replicação do DNA/genética , Mutação em Linhagem Germinativa , Adolescente , Adulto , Biomarcadores Tumorais , Criança , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Estudos Retrospectivos , Análise de Sobrevida , Microambiente Tumoral , Adulto Jovem
9.
J Med Genet ; 59(4): 318-327, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33622763

RESUMO

BACKGROUND: Constitutional mismatch repair deficiency syndrome (CMMRD) is the most aggressive cancer predisposition syndrome associated with multiorgan cancers, often presenting in childhood. There is variability in age and presentation of cancers and benign manifestations mimicking neurofibromatosis type 1. Genetic testing may not be informative and is complicated by pseudogenes associated with the most commonly associated gene, PMS2. To date, no diagnostic criteria exist. Since surveillance and immune-based therapies are available, establishing a CMMRD diagnosis is key to improve survival. METHODS: In order to establish a robust diagnostic path, a multidisciplinary international working group, with representation from the two largest consortia (International Replication Repair Deficiency (IRRD) consortium and European Consortium Care for CMMRD (C4CMMRD)), was formed to establish diagnostic criteria based on expertise, literature review and consensus. RESULTS: The working group established seven diagnostic criteria for the diagnosis of CMMRD, including four definitive criteria (strong evidence) and three likely diagnostic criteria (moderate evidence). All criteria warrant CMMRD surveillance. The criteria incorporate germline mismatch repair results, ancillary tests and clinical manifestation to determine a diagnosis. Hallmark cancers for CMMRD were defined by the working group after extensive literature review and consultation with the IRRD and C4CMMRD consortia. CONCLUSIONS: This position paper summarises the evidence and rationale to provide specific guidelines for CMMRD diagnosis, which necessitates appropriate surveillance and treatment.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Consenso , Reparo de Erro de Pareamento de DNA/genética , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/terapia
10.
Cancer Discov ; 11(12): 3008-3027, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301788

RESUMO

Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-seq), to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer-predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors), and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor-normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers. SIGNIFICANCE: Pediatric cancers are driven by diverse genomic lesions, and sequencing has proven useful in evaluating high-risk and relapsed/refractory cases. We show that combined WGS, WES, and RNA-seq of tumor and paired normal tissues enables identification and characterization of genetic drivers across the full spectrum of pediatric cancers. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Neoplasias , Criança , DNA , Humanos , Mutação , Neoplasias/genética , Análise de Sequência de RNA , Sequenciamento do Exoma
11.
Cancer Med ; 10(6): 2026-2034, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33624449

RESUMO

BACKGROUND: With the advent of next generation sequencing, tumor and germline genomic testing are increasingly being used in the management of pediatric cancer patients. Despite this increase in testing, many pediatric hematology-oncology (PHO) providers are not confident interpreting or utilizing tumor or germline genomic results to care for their patients. METHODS: We developed and delivered a needs assessment survey to PHO program directors, attendings, and fellows in the United States to understand this deficiency, gather data on existing cancer genomics educational initiatives, and query preferences for creating a future curriculum. RESULTS: The survey includes 31 (41%) of 74 invited PHO program directors, 110 (11%) of 1032 invited attendings, and 79 fellows. The majority of attending physicians and fellows responding to the survey agree that understanding tumor (95% attending physicians; 95% fellows) and germline (86% attending physicians; 94% fellows) genomic information is essential for their practice. However, only 9 of 31 (29%) responding programs report that they have an existing cancer genomics curriculum. Most program directors indicated that the ideal genomics curriculum would occur during the first year of fellowship and incorporate direct patient care, online modules, and problem-based learning. Attending physicians and fellows identified that addressing indications for ordering tumor and germline genomic testing, counseling about the risks and benefits of such testing, and interpreting and individualizing clinical management based on tumor and germline results should be included in a future curriculum. CONCLUSION: The results of this study reveal a great need to develop a curriculum that can be offered across PHO fellowship programs to expand knowledge in the area of cancer genomics.


Assuntos
Bolsas de Estudo , Hematologia/educação , Oncologia/educação , Avaliação das Necessidades , Neoplasias/genética , Pediatria/educação , Currículo , Aconselhamento Genético , Testes Genéticos , Genômica/educação , Humanos , Medição de Risco , Inquéritos e Questionários/estatística & dados numéricos
12.
Clin Case Rep ; 8(12): 2373-2376, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33363744

RESUMO

Pulmonary cysts and neoplasms, especially congenital or occurring at a young age, should be thoroughly investigated. Evaluation for DICER1 mutations should be performed if there is a family history of this syndrome, the lung cyst/neoplasm is a pleuropulmonary blastoma, or other clinical manifestations of this syndrome are present or develop.

13.
Am J Hum Genet ; 107(5): 963-976, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157009

RESUMO

NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Feminino , Expressão Gênica , Genótipo , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/patologia , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Fenótipo , Gravidez , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Adulto Jovem
14.
JCO Precis Oncol ; 4: 202-211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32395682

RESUMO

PURPOSE: For the advances of pediatric oncology next generation sequencing (NGS) research to equitably benefit all children, a diverse and representative sample of participants is needed. However, little is known about demographic and clinical characteristics that differentiate families who decline enrollment in pediatric oncology NGS research. METHODS: Demographic and clinical data were retrospectively extracted for 363 pediatric oncology patients (0-21 years) approached for enrollment on Genomes for Kids (G4K), a study examining the feasibility of comprehensive clinical genomic analysis of tumors and paired normal samples. Demographic and clinical factors that significantly differentiated which families declined were subsequently compared to enrollment in Clinical Implementation of Pharmacogenetics (PG4KDS) for 348 families, a pharmacogenomics study with more explicit therapeutic benefit examining genes affecting drug responses and metabolism. RESULTS: Fifty-three (14.6%) families declined enrollment in G4K. Race/ethnicity was the only variable that significantly differentiated study refusal using multivariate logistic regression, with families of black children more likely to decline enrollment compared to families of non-Hispanic or Hispanic white children. Reasons for declining G4K were generally consistent with other pediatric genomics research, with feeling overwhelmed and insurance discrimination fears most frequently cited. Families of black children were also more likely to decline enrollment in PG4KDS. Thirteen (3.7%) of the 348 families approached for both studies declined PG4KDS. CONCLUSION: Race/ethnicity differentiated study declination across two different pediatric oncology genomics studies, suggesting enrollment disparities in the context of pediatric oncology genomics research. Genomics research participant samples that do not fully represent racial and ethnic minorities risk further exacerbating health disparities. Additional work is needed to understand the nuances of parental decision making in genomic research and facilitate enrollment of diverse patient populations.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31604778

RESUMO

Patients harboring germline pathogenic biallelic variants in genes involved in the recognition and repair of DNA damage are known to have a substantially increased cancer risk. Emerging evidence suggests that individuals harboring heterozygous variants in these same genes may also be at heightened, albeit lesser, risk for cancer. Herein, we sought to determine whether heterozygous variants in RECQL4, the gene encoding an essential DNA helicase that is defective in children with the autosomal recessive cancer-predisposing condition Rothmund-Thomson syndrome (RTS), are associated with increased risk for childhood cancer. To address this question, we interrogated germline sequence data from 4435 pediatric cancer patients at St. Jude Children's Research Hospital and 1127 from the National Cancer Institute Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database and identified 24 (0.43%) who harbored loss-of-function (LOF) RECQL4 variants, including five of 249 (2.0%) with osteosarcoma (OS). These RECQL4 variants were significantly overrepresented in children with OS, the cancer most frequently observed in patients with RTS, as compared to 134,187 noncancer controls in the Genome Aggregation Database (gnomAD v2.1; P = 0.00087, odds ratio [OR] = 7.1, 95% CI, 2.9-17). Nine of the 24 (38%) individuals possessed the same c.1573delT (p.Cys525Alafs) variant located in the highly conserved DNA helicase domain, suggesting that disruption of this domain is central to oncogenesis. Altogether these data expand our understanding of the genetic factors predisposing to childhood cancer and reveal a novel association between heterozygous RECQL4 LOF variants and development of pediatric OS.


Assuntos
Osteossarcoma/genética , RecQ Helicases/genética , Adolescente , Criança , Feminino , Células Germinativas , Humanos , Mutação com Perda de Função/genética , Perda de Heterozigosidade/genética , Masculino , Mutação , Osteossarcoma/metabolismo , Linhagem , RecQ Helicases/metabolismo
16.
Cancer ; 125(14): 2455-2464, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30901077

RESUMO

BACKGROUND: Patients with cancer are increasingly offered genomic sequencing, including germline testing for cancer predisposition or other disorders. Such testing is unfamiliar to patients and families, and clear communication is needed to introduce genomic concepts and convey risk and benefit information. METHODS: Parents of children with cancer were offered the opportunity to have their children's tumor and germline examined with clinical genomic sequencing. Families were introduced to the study with a 2-visit informed consent model. Baseline genetic knowledge and self-reported literacy/numeracy were collected before a study introduction visit, during which basic concepts related to genomic sequencing were discussed. Information was reinforced during a second visit, during which informed consent was obtained and a posttest was administered. RESULTS: As reflected by the percentage of correct answers on the pretest and posttest assessments, this model increased genetic knowledge by 11.1% (from 77.8% to 88.9%; P < .0001) in 121 parents participating in both the study introduction and consent visits. The percentage of parents correctly identifying the meaning of somatic and germline mutations increased significantly (from 18% to 59% [somatic] and from 31% to 64% [germline]; P < .0001). Nevertheless, these concepts remained unfamiliar to one-third of the parents. No relation was identified between the change in the overall percentage of correct answers and self-reported literacy, numeracy, or demographics. CONCLUSIONS: The use of a 2-visit communication model improved knowledge of concepts relevant to genomic sequencing, particularly differences between somatic and germline testing; however, these areas remained confusing to many participants, and reinforcement may be necessary to achieve complete understanding.


Assuntos
Predisposição Genética para Doença , Testes Genéticos/métodos , Células Germinativas , Consentimento Livre e Esclarecido/psicologia , Competência Mental/psicologia , Neoplasias/genética , Pais/educação , Adolescente , Adulto , Idoso , Criança , Feminino , Mutação em Linhagem Germinativa , Humanos , Conhecimento , Masculino , Pessoa de Meia-Idade , Autorrelato , Adulto Jovem
17.
Pediatr Blood Cancer ; 65(7): e27030, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29512865

RESUMO

Malignant progression of a benign or low-grade tumor in individuals with germline alteration of SMARCB1 gene is not well characterized. In a family in which two carrier children had germline SMARCB1 mutations and atypical teratoid rhabdoid tumor, we report malignant progression of a nerve sheath tumor over a 7-year period in an affected adult family member. Prompt identification of the germline SMARCB1 alteration and the resultant rhabdoid tumor predisposition syndrome can help guide genetic counseling and surveillance in affected family members.


Assuntos
Predisposição Genética para Doença , Neurofibrossarcoma/patologia , Tumor Rabdoide/patologia , Progressão da Doença , Feminino , Mutação em Linhagem Germinativa , Humanos , Lactente , Masculino , Neurofibrossarcoma/complicações , Neurofibrossarcoma/genética , Linhagem , Prognóstico , Tumor Rabdoide/complicações , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Síndrome
18.
Clin Cancer Res ; 23(13): e91-e97, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28674117

RESUMO

As the understanding of the genetic etiology of childhood cancers increases, the need for the involvement of experts familiar with the provision of genetic counseling for this population is paramount. In October 2016, the American Association for Cancer Research organized the AACR Childhood Cancer Predisposition Workshop in which international experts in pediatric cancer predisposition met to establish surveillance guidelines for children with cancer predisposition. Identifying for whom, when, why, and how these cancer predisposition surveillance guidelines should be implemented is essential. Genetic counselors invited to this workshop provide a genetic counseling framework for oncology professionals in this article. Points of entry and recommendations regarding the provision and timing of the initial and subsequent genetic counseling sessions are addressed. The genetic counseling and testing processes are reviewed, and the psychologic impact related to surveillance is explored. Pediatric cancer genetics will continue to grow and evolve as a field, and genetic counseling services will be vital to ensure appropriate identification and management of at-risk children moving forward. Clin Cancer Res; 23(13); e91-e97. ©2017 AACRSee all articles in the online-only CCR Pediatric Oncology Series.


Assuntos
Aconselhamento Genético/tendências , Predisposição Genética para Doença/epidemiologia , Oncologia/tendências , Neoplasias/diagnóstico , Criança , Conselheiros , Testes Genéticos/tendências , Humanos , Neoplasias/epidemiologia , Neoplasias/genética , Pediatria/tendências , Medição de Risco
19.
Clin Cancer Res ; 23(12): e76-e82, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620008

RESUMO

PTEN hamartoma tumor syndrome (PHTS), DICER1 syndrome, and hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome are pleiotropic tumor predisposition syndromes that include benign and malignant neoplasms affecting adults and children. PHTS includes several disorders with shared and distinct clinical features. These are associated with elevated lifetime risk of breast, thyroid, endometrial, colorectal, and renal cancers as well as melanoma. Thyroid cancer represents the predominant cancer risk under age 20 years. DICER1 syndrome includes risk for pleuropulmonary blastoma, cystic nephroma, ovarian sex cord-stromal tumors, and multinodular goiter and thyroid carcinoma as well as brain tumors including pineoblastoma and pituitary blastoma. Individuals with HLRCC may develop multiple cutaneous and uterine leiomyomas, and they have an elevated risk of renal cell carcinoma. For each of these syndromes, a summary of the key syndromic features is provided, the underlying genetic events are discussed, and specific screening is recommended. Clin Cancer Res; 23(12); e76-e82. ©2017 AACRSee all articles in the online-only CCR Pediatric Oncology Series.


Assuntos
RNA Helicases DEAD-box/genética , Fumarato Hidratase/genética , Síndrome do Hamartoma Múltiplo/genética , Leiomiomatose/genética , Síndromes Neoplásicas Hereditárias/genética , PTEN Fosfo-Hidrolase/genética , Ribonuclease III/genética , Neoplasias Cutâneas/genética , Neoplasias Uterinas/genética , Criança , Detecção Precoce de Câncer , Síndrome do Hamartoma Múltiplo/epidemiologia , Síndrome do Hamartoma Múltiplo/patologia , Humanos , Leiomiomatose/epidemiologia , Leiomiomatose/patologia , Síndromes Neoplásicas Hereditárias/epidemiologia , Síndromes Neoplásicas Hereditárias/patologia , Fatores de Risco , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/patologia , Neoplasias Uterinas/epidemiologia , Neoplasias Uterinas/patologia
20.
Cancer ; 123(12): 2352-2359, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28192596

RESUMO

BACKGROUND: The incorporation of genomic testing to identify targetable somatic alterations and predisposing germline mutations into the clinical setting is becoming increasingly more common. Despite its potential usefulness, to the authors' knowledge physician confidence with regard to understanding and applying genomic testing remains unclear, particularly within the realm of pediatric oncology. METHODS: Before initiating an institutional feasibility study regarding the integration of clinical genomic testing, the authors surveyed pediatric oncologists regarding their confidence around understanding of genomic testing, perceived usefulness of test results, preferences around the disclosure of germline test results, and possible risks and benefits of testing. RESULTS: Among survey respondents (52 of 88 contacted; response rate of 59%), only a minority were confident in interpreting, using, and discussing somatic (35%) or germline (27%) genomic test results. Providers who were confident in interpreting somatic results were significantly more likely to anticipate using the results to plan the treatment of patients with relapsed or refractory cancers (P = .009). Similarly, providers who reported confidence in interpreting germline results were significantly more likely to discuss and use these results as part of clinical care (P<.0001). The majority of physicians (93%), regardless of their level of confidence, wanted to speak to a genetic counselor before disclosing germline test results. CONCLUSIONS: Among physicians at a comprehensive pediatric cancer center, confidence in the interpretation, use, and discussion of oncology-based genomic test results appears to be low, both in terms of somatic and germline testing. To optimize the integration of genomic sequencing into cancer care, methods must be developed to improve basic competencies around cancer-based genomic testing. Given the complexities surrounding variant interpretation and genotype-phenotype relationships, interdisciplinary collaborations are warranted. Cancer 2017;123:2352-2359. © 2017 American Cancer Society.


Assuntos
Atitude do Pessoal de Saúde , Competência Clínica , Testes Genéticos , Oncologia , Neoplasias/genética , Pediatria , Médicos , Revelação , Aconselhamento Genético , Genômica , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA