Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(695): eadf6724, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163614

RESUMO

Checkpoint immunotherapy has yielded meaningful responses across many cancers but has shown modest efficacy in advanced prostate cancer. B7 homolog 3 protein (B7-H3/CD276) is an immune checkpoint molecule and has emerged as a promising therapeutic target. However, much remains to be understood regarding B7-H3's role in cancer progression, predictive biomarkers for B7-H3-targeted therapy, and combinatorial strategies. Our multi-omics analyses identified B7-H3 as one of the most abundant immune checkpoints in prostate tumors containing PTEN and TP53 genetic inactivation. Here, we sought in vivo genetic evidence for, and mechanistic understanding of, the role of B7-H3 in PTEN/TP53-deficient prostate cancer. We found that loss of PTEN and TP53 induced B7-H3 expression by activating transcriptional factor Sp1. Prostate-specific deletion of Cd276 resulted in delayed tumor progression and reversed the suppression of tumor-infiltrating T cells and NK cells in Pten/Trp53 genetically engineered mouse models. Furthermore, we tested the efficacy of the B7-H3 inhibitor in preclinical models of castration-resistant prostate cancer (CRPC). We demonstrated that enriched regulatory T cells and elevated programmed cell death ligand 1 (PD-L1) in myeloid cells hinder the therapeutic efficacy of B7-H3 inhibition in prostate tumors. Last, we showed that B7-H3 inhibition combined with blockade of PD-L1 or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) achieved durable antitumor effects and had curative potential in a PTEN/TP53-deficient CRPC model. Given that B7-H3-targeted therapies have been evaluated in early clinical trials, our studies provide insights into the potential of biomarker-driven combinatorial immunotherapy targeting B7-H3 in prostate cancer, among other malignancies.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição Sp1/metabolismo , Regulação para Cima , Progressão da Doença
2.
Kidney Int ; 103(3): 501-513, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36328098

RESUMO

Final urine volume and concentration are defined by water reabsorption through the water channel proteins aquaporin (AQP)-2, -3 and -4 in the collecting duct. However, the transcriptional regulation of these AQPs is not well understood. The Hippo/Yes-associated protein 1 (YAP) pathway plays an important role in organ size control and tissue homeostasis. When the Hippo pathway including the Mst1/Mst2 kinases is inhibited, YAP is activated and functions as a transcription co-activator. Our previous work revealed a pathological role of tubular YAP activation in chronic kidney disease, but the physiological role of YAP in the kidney remains to be established. Here, we found that tubule-specific Yap knockout mice showed increased urine output and decreased urinary osmolality. Decreases in Aqp2, -3 and -4 mRNA and protein abundance in the kidney were evident in Yap knockout mice. Analysis of Mst1/Mst2 double knockout and Mst1/Mst2/Yap triple knockout mice showed that expression of Aqp2 and Aqp4 but not Aqp3 was dependent on YAP. Furthermore, YAP was recruited to the promoters of the Aqp2 and Aqp4 genes and stimulated their transcription. Interestingly, YAP was found to interact with transcription factors GATA2, GATA3 and NFATc1. These three factors promoted Aqp2 transcription in a YAP dependent manner in collecting duct cells. These three factors also promoted Aqp4 transcription whereas only GATA2 and GATA3 enhanced Aqp3 transcription. Thus, our results suggest that YAP promotes Aqp2 and Aqp4 transcription, interacts with GATA2, GATA3 and NFATc1 to control Aqp2 expression, while Aqp-2, -3 and -4 exploit overlapping mechanisms for their baseline transcriptional regulation.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Proteínas de Sinalização YAP , Rim/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Knockout , Água/metabolismo , Homeostase , Túbulos Renais Coletores/metabolismo
3.
Cancer Res ; 82(17): 3088-3101, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35771632

RESUMO

Clinical studies have shown that subsets of patients with cancer achieve a significant benefit from Aurora kinase inhibitors, suggesting an urgent need to identify biomarkers for predicting drug response. Chromodomain helicase DNA binding protein 1 (CHD1) is involved in chromatin remodeling, DNA repair, and transcriptional plasticity. Prior studies have demonstrated that CHD1 has distinct expression patterns in cancers with different molecular features, but its impact on drug responsiveness remains understudied. Here, we show that CHD1 promotes the susceptibility of prostate cancer cells to inhibitors targeting Aurora kinases, while depletion of CHD1 impairs their efficacy in vitro and in vivo. Pan-cancer drug sensitivity analyses revealed that high expression of CHD1 was associated with increased sensitivity to Aurora kinase A (AURKA) inhibitors. Mechanistically, KPNA2 served as a direct target of CHD1 and suppressed the interaction of AURKA with the coactivator TPX2, thereby rendering cancer cells more vulnerable to AURKA inhibitors. Consistent with previous research reporting that loss of PTEN elevates CHD1 levels, studies in a genetically engineered mouse model, patient-derived organoids, and patient samples showed that PTEN defects are associated with a better response to AURKA inhibition in advanced prostate cancer. These observations demonstrate that CHD1 plays an important role in modulating Aurora kinases and drug sensitivities, providing new insights into biomarker-driven therapies targeting Aurora kinases for future clinical studies. SIGNIFICANCE: CHD1 plays a critical role in controlling AURKA activation and promoting Aurora kinase inhibitor sensitivity, providing a potential clinical biomarker to guide cancer treatment.


Assuntos
Aurora Quinase A , Proteínas de Ciclo Celular , DNA Helicases , Proteínas de Ligação a DNA , Proteínas Associadas aos Microtúbulos , Neoplasias da Próstata , Animais , Antineoplásicos , Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Inibidores de Proteínas Quinases/farmacologia
4.
Cancer Discov ; 10(9): 1374-1387, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32385075

RESUMO

Genetic inactivation of PTEN is common in prostate cancer and correlates with poorer prognosis. We previously identified CHD1 as an essential gene in PTEN-deficient cancer cells. Here, we sought definitive in vivo genetic evidence for, and mechanistic understanding of, the essential role of CHD1 in PTEN-deficient prostate cancer. In Pten and Pten/Smad4 genetically engineered mouse models, prostate-specific deletion of Chd1 resulted in markedly delayed tumor progression and prolonged survival. Chd1 deletion was associated with profound tumor microenvironment (TME) remodeling characterized by reduced myeloid-derived suppressor cells (MDSC) and increased CD8+ T cells. Further analysis identified IL6 as a key transcriptional target of CHD1, which plays a major role in recruitment of immunosuppressive MDSCs. Given the prominent role of MDSCs in suppressing responsiveness to immune checkpoint inhibitors (ICI), our genetic and tumor biological findings support combined testing of anti-IL6 and ICI therapies, specifically in PTEN-deficient prostate cancer. SIGNIFICANCE: We demonstrate a critical role of CHD1 in MDSC recruitment and discover CHD1/IL6 as a major regulator of the immunosuppressive TME of PTEN-deficient prostate cancer. Pharmacologic inhibition of IL6 in combination with immune checkpoint blockade elicits robust antitumor responses in prostate cancer.This article is highlighted in the In This Issue feature, p. 1241.


Assuntos
Proteínas de Ligação a DNA/metabolismo , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Evasão Tumoral/genética , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Masculino , Camundongos Transgênicos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteína Smad4/genética , Microambiente Tumoral/genética
5.
Cell Death Differ ; 27(10): 2797-2809, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32332916

RESUMO

Although the roles of the Hippo pathway in organogenesis and tumorigenesis have been well studied in multiple organs, its role in sperm maturation and male fertility has not been investigated. The initial segment (IS) of the epididymis plays a critical role in sperm maturation. IS differentiation is governed by ERK1/2, but the mechanisms of ERK1/2 activation in IS are not fully understood. Here we show that double knockout (dKO) of mammalian sterile 20-like kinases 1 and 2 (Mst1 and Mst2), homologs of Hippo in Drosophila, in the epididymal epithelium led to male infertility in mice. Sperm in the cauda epididymides of mutant mice were immotile with flagellar angulation and severely disorganized structures. Loss of Mst1/2 activated YAP and increased proliferation and cell death in all the segments of epididymis. The mutant mice showed substantially suppressed MEK/ERK signaling in the IS and failed IS differentiation. Deletion of Yap restored the reduced MEK/ERK signaling, and partially rescued the defective IS differentiation and fertility in Mst1/2 dKO mice. Our results demonstrate that YAP inhibits the MEK/ERK pathway in IS epithelial cells, and MST1/2 control IS differentiation and fertility at least partially by repressing YAP. Taken together, the Hippo pathway is essential for sperm maturation and male fertility.


Assuntos
Epididimo , Células Epiteliais , Infertilidade Masculina/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Diferenciação Celular , Epididimo/citologia , Epididimo/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Serina-Treonina Quinase 3
6.
J Am Soc Nephrol ; 31(5): 946-961, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32253273

RESUMO

BACKGROUND: The serine/threonine kinases MST1 and MST2 are core components of the Hippo pathway, which has been found to be critically involved in embryonic kidney development. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the pathway's main effectors. However, the biologic functions of the Hippo/YAP pathway in adult kidneys are not well understood, and the functional role of MST1 and MST2 in the kidney has not been studied. METHODS: We used immunohistochemistry to examine expression in mouse kidneys of MST1 and MST2, homologs of Hippo in Drosophila. We generated mice with tubule-specific double knockout of Mst1 and Mst2 or triple knockout of Mst1, Mst2, and Yap. PCR array and mouse inner medullary collecting duct cells were used to identify the primary target of Mst1/Mst2 deficiency. RESULTS: MST1 and MST2 were predominantly expressed in the tubular epithelial cells of adult kidneys. Deletion of Mst1/Mst2 in renal tubules increased activity of YAP but not TAZ. The kidneys of mutant mice showed progressive inflammation, tubular and glomerular damage, fibrosis, and functional impairment; these phenotypes were largely rescued by deletion of Yap in renal tubules. TNF-α expression was induced via both YAP-dependent and YAP-independent mechanisms, and TNF-α and YAP amplified the signaling activities of each other in the tubules of kidneys with double knockout of Mst1/Mst2. CONCLUSIONS: Our findings show that tubular Mst1/Mst2 deficiency leads to CKD through both the YAP and non-YAP pathways and that tubular YAP activation induces renal fibrosis. The pathogenesis seems to involve the reciprocal stimulation of TNF-α and YAP signaling activities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/fisiologia , Túbulos Renais/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Insuficiência Renal Crônica/enzimologia , Animais , Células Cultivadas , Fibrose , Regulação da Expressão Gênica , Via de Sinalização Hippo , Marcação In Situ das Extremidades Cortadas , Rim/embriologia , Rim/enzimologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Serina-Treonina Quinase 3 , Transdução de Sinais , Transativadores/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/fisiologia , Proteínas de Sinalização YAP
7.
Cell Death Differ ; 26(11): 2194-2207, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30760872

RESUMO

Lethal (3) malignant brain tumor like 2 (L3MBTL2) is a member of the MBT-domain proteins, which are involved in transcriptional repression and implicated in chromatin compaction. Our previous study has shown that L3MBTL2 is highly expressed in the testis, but its role in spermatogenesis remains unclear. In the present study, we found that L3MBTL2 was most highly expressed in pachytene spermatocytes within the testis. Germ cell-specific ablation of L3mbtl2 in the testis led to increased abnormal spermatozoa, progressive decrease of sperm counts and premature testicular failure in mice. RNA-sequencing analysis on L3mbtl2 deficient testes confirmed that L3MBTL2 was a transcriptional repressor but failed to reveal any significant changes in spermatogenesis-associated genes. Interestingly, L3mbtl2 deficiency resulted in increased γH2AX deposition in the leptotene spermatocytes, subsequent inappropriate retention of γH2AX on autosomes, and defective crossing-over and synapsis during the pachytene stage of meiosis I, and more germ cell apoptosis and degeneration in aging mice. L3MBTL2 interacted with the histone ubiquitin ligase RNF8. Inhibition of L3MBTL2 reduced nuclear RNF8 and ubH2A levels in GC2 cells. L3mbtl2 deficiency led to decreases in the levels of the RNF8 and ubH2A pathway and in histone acetylation in elongating spermatids, and in protamine 1 deposition and chromatin condensation in sperm. These results suggest that L3MBTL2 plays important roles in chromatin remodeling during meiosis and spermiogenesis.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/metabolismo , Proteínas Nucleares/genética , Espermatócitos/metabolismo , Espermatogênese/genética , Fatores de Transcrição/genética , Acetilação , Animais , Apoptose/genética , Montagem e Desmontagem da Cromatina/fisiologia , Histonas/metabolismo , Masculino , Prófase Meiótica I/fisiologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Estágio Paquíteno/fisiologia , Proteínas do Grupo Polycomb/metabolismo , Contagem de Espermatozoides , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(7): E1475-E1484, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382757

RESUMO

Tubular cell necrosis is a key histological feature of acute kidney injury (AKI). Necroptosis is a type of programed necrosis, which is executed by mixed lineage kinase domain-like protein (MLKL) upon its binding to the plasma membrane. Emerging evidence indicates that necroptosis plays a critical role in the development of AKI. However, it is unclear whether renal tubular cells undergo necroptosis in vivo and how the necroptotic pathway is regulated during AKI. Repulsive guidance molecule (RGM)-b is a member of the RGM family. Our previous study demonstrated that RGMb is highly expressed in kidney tubular epithelial cells, but its biological role in the kidney has not been well characterized. In the present study, we found that RGMb reduced membrane-associated MLKL levels and inhibited necroptosis in cultured cells. During ischemia/reperfusion injury (IRI) or oxalate nephropathy, MLKL was induced to express on the apical membrane of proximal tubular (PT) cells. Specific knockout of Rgmb in tubular cells (Rgmb cKO) increased MLKL expression at the apical membrane of PT cells and induced more tubular cell death and more severe renal dysfunction compared with wild-type mice. Treatment with the necroptosis inhibitor Necrostatin-1 or GSK'963 reduced MLKL expression on the apical membrane of PT cells and ameliorated renal function impairment after IRI in both wild-type and Rgmb cKO mice. Taken together, our results suggest that proximal tubular cell necroptosis plays an important role in AKI, and that RGMb protects against AKI by inhibiting MLKL membrane association and necroptosis in proximal tubular cells.


Assuntos
Injúria Renal Aguda/prevenção & controle , Apoptose , Túbulos Renais/patologia , Necrose , Proteínas do Tecido Nervoso/fisiologia , Proteínas Quinases/metabolismo , Traumatismo por Reperfusão/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Moléculas de Adesão Celular Neuronais , Proteínas Ligadas por GPI , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Substâncias Protetoras/farmacologia , Proteínas Quinases/genética
9.
Kidney Int ; 93(4): 855-870, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276099

RESUMO

DNA damage contributes to renal tubular cell death during kidney injury, but how DNA damage in tubular cells is regulated is not fully understood. Lethal (3) malignant brain tumor-like 2 (L3MBTL2), a novel polycomb group protein, has been implicated in regulating chromatin architecture. However, the biological functions of L3MBTL2 are largely undefined. Here we found that L3MBTL2 was expressed in the nuclei of renal tubular epithelial cells in mice. Ablation of L3mbtl2 in renal tubular cells resulted in increases in nuclear DNA damage, p53 activation, apoptosis, tubular injury and kidney dysfunction after cisplatin treatment or unilateral ureteral obstruction. In vitro, inhibition of L3MBTL2 sequentially promoted histone γH2AX expression, p53 activation and apoptosis in cisplatin-treated mouse proximal tubular TKPTS cells. Inhibition of p53 activity attenuated the apoptosis induced by L3mbtl2 deficiency after cisplatin treatment both in vivo and in vitro. Intriguingly, unlike other polycomb proteins, L3MBTL2 was not recruited to DNA damage sites, but instead increased nuclear chromatin density and reduced initial DNA damage load. Thus, L3MBTL2 plays a protective role in kidney injury, in part by inhibiting the DNA damage-p53-apoptosis pathway.


Assuntos
Injúria Renal Aguda/metabolismo , Apoptose , Dano ao DNA , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas Nucleares/metabolismo , Insuficiência Renal Crônica/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Montagem e Desmontagem da Cromatina , Cisplatino , Modelos Animais de Doenças , Células Epiteliais/patologia , Histonas/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Obstrução Ureteral/complicações
10.
Biol Reprod ; 94(4): 78, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26911425

RESUMO

Bone morphogenetic protein (BMP) signaling plays an important role in spermatogenesis and follicle development. Our previous studies have shown that repulsive guidance molecule b (RGMb, also known as Dragon) is a coreceptor that enhances BMP2 and BMP4 signaling in several cell types and that RGMb is expressed in spermatocytes and spermatids in the testis and in oocytes of the secondary follicles in the ovary. Here, we demonstrated that specific deletion of Rgmb in germ cells in the testis and ovary did not alter Smad1/5/8 phosphorylation, gonadal structures, and fertility. In addition, ovaries from postnatal global Rgmb knockout mice showed similar structures to the wild-type ovaries. Our results suggest that RGMb is not essential for normal gonadal function.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Folículo Ovariano/crescimento & desenvolvimento , Testículo/fisiologia , Animais , Moléculas de Adesão Celular Neuronais , Feminino , Fertilidade , Proteínas Ligadas por GPI/metabolismo , Masculino , Camundongos Knockout , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/intoxicação , Folículo Ovariano/anatomia & histologia , Testículo/anatomia & histologia
11.
Am J Physiol Endocrinol Metab ; 310(4): E289-300, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670488

RESUMO

Fibroblast growth factor (FGF) 19 is a member of the FGF15/19 subfamily of FGFs that includes FGF15/19, FGF21, and FGF23. FGF19 has been shown to have profound effects on liver metabolism and regeneration. FGF19 binds to FGFR4 and its coreceptor ß-Klotho to activate intracellular kinases, including Erk1/2. Studies have shown that proinflammatory cytokines such as TNFα impair FGF21 signaling in adipose cells by repressing ß-Klotho expression. However, little is known about the effects of inflammation on the FGF19 pathway in the liver. In the present study, we found that lipopolysaccharide (LPS) inhibited ß-Klotho and Fgfr4 expression in livers in mice, whereas LPS had no effects on the two FGF19 receptors in Huh-7 and HepG2 cells. Of the three inflammatory cytokines TNFα, IL-1ß, and IL-6, IL-1ß drastically inhibited ß-Klotho expression, whereas TNFα and IL-6 had no or minor effects. None of the three cytokines had any effects on FGFR4 expression. IL-1ß directly inhibited ß-Klotho transcription, and this inhibition required both the JNK and NF-κB pathways. In addition, IL-1ß inhibited FGF19-induced Erk1/2 activation and cell proliferation. These results suggest that inflammation and IL-1ß play an important role in regulating FGF19 signaling and function in the liver.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Hepatócitos/efeitos dos fármacos , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23 , Células Hep G2 , Humanos , Interleucina-6/farmacologia , Proteínas Klotho , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/efeitos dos fármacos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
12.
Acta Histochem ; 117(3): 297-304, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25817199

RESUMO

Scavenger receptor class B type 1 (SR-B1) preferentially mediates the selective uptake of high density lipoprotein-cholesterol ester and the delivery of cholesterol for steroidogenesis. Although multiple analyses have investigated the function of SR-B1 in the liver, adrenal and ovary, its expression in rat ovary and uterus during the estrous cycle is lacking. In the present study, real-time PCR, western blot and immunohistochemistry (IHC) were used to investigate SR-B1 expression in the rat ovary and uterus during the estrous cycle. The results demonstrated that ovarian SR-B1 expression was in a stage-dependent manner, continuously increased from proestrus and kept elevated during metoestrus, while uterine SR-B1 expression decreased from proestrus to diestrus. To determine whether ovarian and uterine SR-B1 expression were affected by sex steroid hormones, immature rats were treated with 17 ß-estradiol (E2), progesterone (P4), or their antagonists from postnatal days 24-26. Results showed that the levels of SR-B1 mRNA and protein were significantly up-regulated by E2 in both the ovary and uterus. IHC results showed that SR-B1 was primarily localized in the oocytes, theca internal cells (T-I) of follicles, interstitial cells (IC) as well as corpus luteum (CL), but not granulosa cells (GC) in the ovary during the estrous cycle. Uterine SR-B1 was highly expressed in the endometrial luminal epithelial cells (LEC) and glandular epithelial cells (GEC) as well as in the circular muscle (CM) cells, and weak staining in stromal cells (SC) through estrous cycle. Taken together, SR-B1 expression in the ovary and uterus across the estrous cycle demonstrate that SR-B1 may be involved in uterine function, follicular development as well as luteal function.


Assuntos
Ciclo Estral/metabolismo , Ovário/metabolismo , Receptores Depuradores Classe B/metabolismo , Útero/metabolismo , Animais , Feminino , Expressão Gênica , Especificidade de Órgãos , Ovário/citologia , Ratos , Ratos Sprague-Dawley , Receptores Depuradores Classe B/genética , Útero/citologia
13.
Acta Histochem ; 117(2): 211-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614048

RESUMO

The current study was conducted to evaluate the expression of ATF3, in association with the activation of mitogen-activated protein kinases (MAPK) during prostaglandin F2α analog (PGF)-induced luteal regression in rats. A sequential PMSG/hCG treatment paradigm was used to obtain a single, well-defined generation of corpora lutea (CL) in rats. Rats were treated with PGF for 0-4h on day 7 of pseudopregnancy. Results showed that serum progesterone (P4) concentrations declined in a time dependent manner. Western blot results revealed that ATF3 increased within 2h post-PGF injection. Phosphorylated ERK1/2 (p-ERK) and JNK (p-JNK) increased within 30min and then were gradually reduced in response to PGF. In contrast, the levels of phosphorylated p38 MAPK (p-p38) were not significantly altered. The immunostaining density for p-ERK decreased from the periphery to the center of the corpus luteum following treatment with PGF, while ATF3 was expressed uniformly in the nuclei of luteal steroidogenic cells. These results indicated that treatment with PGF in vivo could induce increases in MAPK phosphorylation, especially in p-ERK, which might be correlated with the increases in ATF3 expression and the decline in P4 concentrations. To our knowledge, this is the first study to provide evidence for temporal relationships between MAPK activation and ATF3 expression during PGF-induced luteal regression in the rat.


Assuntos
Fator 3 Ativador da Transcrição/biossíntese , Corpo Lúteo/metabolismo , Dinoprosta/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Ativação Enzimática/efeitos dos fármacos , Feminino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Acta Histochem ; 116(8): 1231-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25085051

RESUMO

Repulsive guidance molecule b (RGMb; a.k.a. Dragon), initially identified in the embryonic dorsal root ganglion, is the first member of the RGM family shown to enhance bone morphogenetic protein (BMP) signaling by acting as a BMP co-receptor. BMP signaling has been demonstrated to play an important role in the reproductive organs. Our previous study found that RGMb was expressed in the reproductive axis, but whether RGMb expression in reproductive organs changes across the estrous cycle remains unknown. Here, we show in the rat that RGMb mRNA expression in the uterus was significantly higher during metesterus and diestrus than during proestrus and estrus. Western blotting indicated that RGMb protein was significantly lower during estrus compared with the other three stages. Immunohistochemistry revealed that RGMb protein was mainly localized to the uterine luminal and glandular epithelial cells of the endometrium. RGMb mRNA and protein in the ovary remained unchanged during the estrous cycle. RGMb protein was expressed in the oocytes of all follicles. Weak staining for RGMb protein was also found in corpora lutea. RGMb was not detected in granulosa cells and stromal cells. Taken together, RGMb expression in the uterus and ovary across the estrus cycle demonstrate that RGMb may be involved in the regulation of uterine function, follicular development as well as luteal activity.


Assuntos
Ciclo Estral/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ovário/metabolismo , Útero/metabolismo , Animais , Feminino , Proteínas Ligadas por GPI , Ratos
15.
Yi Chuan ; 35(9): 1095-100, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24400483

RESUMO

Pro-opiomelancortin (POMC) plays important roles in the regulation of food intake and energy expenditure. The sheep exon 3 of gene POMC was amplified and sequenced by screening the DNA pools to select single nuclear polymorphisms and analyze the association with the growth traits. Two silent SNP mutations (g.273 T/C and g.456 G/A) in Hu sheep were identified. PCR-restriction fragment length polymorphism (RFLP) was used to test the g.273 T/C and the association between the g.273 T/C polymorphism and some growth traits was analyzed in Hu sheep (n = 162) and East Friesian x Hu crossbred sheep (n=130). The results showed that three genotypes, TT, TC and CC, were detected in Hu sheep with the frequencies of 0.469, 0.438 and 0.093, respectively. Two genotypes, TT and TC, were detected in East Friesian x Hu crossbred sheep with the frequencies of 0.754 and 0.246, respectively. The association analysis showed that in Hu sheep the two-month weaning weight, four-month rump height of genotype CC and the four-month body length, cannon circumference of genotype TC were significantly higher than those of genotype TT (P < 0.05); the four- and six-month weight of genotype CC were significantly higher than those of genotypes TT and TC (P < 0.01); the four-month body height and body length of genotype CC were significantly higher than those of genotypes TT (P < 0.01) and TC (P < 0.05); the four-month cannon circumference of CC genotype was significantly higher than that of TT genotype (P < 0.01). In East Friesian x Hu crossbred sheep the two-month weaning weight, four-month weight, body height, body length, chest depth and cannon circumference of genotype TC were significantly higher than those of genotype TT (P < 0.05); the six-month weight of genotype TC was significantly higher than that of genotype CC (P < 0.01). In conclusion, the exon 3 of gene POMC was associated with growth traits, and C allele was beneficial to the increase of body weight and body size traits of sheep, which potentially afford a good foundation for further study on POMC gene as aided breeding markers for growth traits in sheep.


Assuntos
Éxons , Polimorfismo de Nucleotídeo Único , Pró-Opiomelanocortina/genética , Ovinos/crescimento & desenvolvimento , Ovinos/genética , Animais , Sequência de Bases , Tamanho Corporal , Peso Corporal , Feminino , Hibridização Genética , Masculino , Dados de Sequência Molecular , Característica Quantitativa Herdável , Ovinos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA