Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 7(1): e10701, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699640

RESUMO

Relevance of mineralized nodules in two-dimensional (2D) osteoblast/osteocyte cultures to bone biology, pathology, and engineering is a decades old question, but a comprehensive answer appears to be still wanting. Bone-like cells, extracellular matrix (ECM), and mineral were all reported but so were non-bone-like ones. Many studies described seemingly bone-like cell-ECM structures based on similarity to few select bone features in vivo, yet no studies examined multiple bone features simultaneously and none systematically studied all types of structures coexisting in the same culture. Here, we report such comprehensive analysis of 2D cultures based on light and electron microscopies, Raman microspectroscopy, gene expression, and in situ messenger RNA (mRNA) hybridization. We demonstrate that 2D cultures of primary cells from mouse calvaria do form bona fide bone. Cells, ECM, and mineral within it exhibit morphology, structure, ultrastructure, composition, spatial-temporal gene expression pattern, and growth consistent with intramembranous ossification. However, this bone is just one of at least five different types of cell-ECM structures coexisting in the same 2D culture, which vary widely in their resemblance to bone and ability to mineralize. We show that the other two mineralizing structures may represent abnormal (disrupted) bone and cartilage-like structure with chondrocyte-to-osteoblast transdifferentiation. The two nonmineralizing cell-ECM structures may mimic periosteal cambium and pathological, nonmineralizing osteoid. Importantly, the most commonly used culture conditions (10mM ß-glycerophosphate) induce artificial mineralization of all cell-ECM structures, which then become barely distinguishable. We therefore discuss conditions and approaches promoting formation of bona fide bone and simple means for distinguishing it from the other cell-ECM structures. Our findings may improve osteoblast differentiation and function analyses based on 2D cultures and extend applications of these cultures to general bone biology and tissue engineering research. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
PLoS One ; 13(7): e0200264, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29990383

RESUMO

OI is a clinically and genetically heterogeneous disorder characterized by bone fragility. More than 90% of patients are heterozygous for mutations in type I collagen genes, COL1A1 and COL1A2, and a common mutation is substitution for an obligatory glycine in the triple helical Gly-X-Y repeats. Few non-glycine substitutions in the triple helical domain have been reported; most result in Y-position substitutions of arginine by cysteine. Here, we investigated leucine and cysteine substitutions for one Y-position arginine, p.Arg958 (Arg780 in the triple helical domain) of proα1(I) chains that cause mild OI. We compared their effects with two substitutions for glycine located in close proximity. Like substitutions for glycine, those for arginine reduced the denaturation temperature of the whole molecule and caused asymmetric posttranslational overmodification of the chains. Circular dichroism and increased susceptibility to cleavage by MMP1, MMP2 and catalytic domain of MMP1 revealed significant destabilization of the triple helix near the collagenase cleavage site. On a cellular level, we observed slower triple helix folding and intracellular collagen retention, which disturbed the Endoplasmic Reticulum function and affected matrix deposition. Molecular dynamic modeling suggested that Arg780 substitutions disrupt the triple helix structure and folding by eliminating hydrogen bonds of arginine side chains, in addition to preventing HSP47 binding. The pathogenic effects of these non-glycine substitutions in bone are probably caused mostly by procollagen misfolding and its downstream effects.


Assuntos
Arginina/metabolismo , Colágeno Tipo I/metabolismo , Osteogênese Imperfeita/metabolismo , Pró-Colágeno/metabolismo , Dicroísmo Circular , Colágeno Tipo I/genética , Humanos , Mutação , Osteogênese Imperfeita/genética , Pró-Colágeno/genética , Dobramento de Proteína
3.
Soft Matter ; 14(15): 2879-2892, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29582024

RESUMO

Cartilage is composed of cells and an extracellular matrix, the latter being a composite of a collagen mesh interpenetrated by proteoglycans responsible for tissue osmotic swelling. The matrix composition and structure vary through the tissue depth. Mapping such variability requires tissue sectioning to gain access. The resulting surface roughness, and concomitant proteoglycan loss contribute to large uncertainties in elastic modulus estimates. To extract elasticity values for the bulk matrix which are not obfuscated by the indeterminate surface layer, we developed a novel experimental and data analysis methodology. We analyzed the surface roughness to optimize the probe size, and performed high-resolution (1 µm) elasticity mapping on thin (∼12 µm), epiphyseal newborn mouse cartilage sections cut parallel to the bone longitudinal axis or normal to the articular surface. Mild fixation prevented the major proteoglycan loss observed in unfixed specimens but not the stress release that resulted in thickness changes in the sectioned matrix. Our novel data analysis method introduces a virtual contact point as a fitting parameter for the Hertz model, to minimize the effects of surface roughness and corrects for the finite section thickness. Our estimates of cartilage elasticity converge with increasing indentation depth and, unlike previous data interpretations, are consistent with linearly elastic material. A high cell density that leaves narrow matrix septa between cells may cause the underestimation of elastic moduli, whereas fixation probably causes an overestimation. The proposed methodology has broader relevance to nano- and micro-indentation of soft materials with multiple length scales of organization and whenever surface effects (including roughness, electrostatics, van der Waals forces, etc.) become significant.

4.
Mol Cell Endocrinol ; 439: 165-174, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27498419

RESUMO

Osteochondromyxomas (OMX) in the context of Carney complex (CNC) and fibrous dysplasia (FD)-like lesions (FDLL) in mice, as well as isolated myxomas in humans may be caused by inactivation of PRKAR1A, the gene coding for the type 1a regulatory subunit (R1α) of cAMP-dependent protein kinase (PKA). OMXs and FDLL in mice lacking Prkar1a grow from abnormal proliferation of adult bone stromal cells (aBSCs). Prkar1a and Prkaca (coding for Cα) haploinsufficiency leads to COX2 activation and prostaglandin E2 (PGE2) production that, in turn, activates proliferation of aBSCs. Celecoxib is a cyclooxygenase-2 (COX2) inhibitor. We hypothesized that COX-2 inhibition may have an effect in FD and FDLL. In vitro treatment of a human cell line prepared from a FD patient with Celecoxib resulted in decreased PGE2 and cell proliferation. Treatment of mice haploinsufficient for R1α and Cα with 1500 mg/kg Celecoxib led to decreased PGE2 and proliferation and increased apoptosis, with a corresponding gene expression profile, resulting in dramatic reduction of tumor growth. Furthermore, the treatment improved the organization of cortical bone that was adjacent to the tumor. We conclude that, in vitro and in vivo, Celecoxib had an inhibitory effect on FD cell proliferation and in mouse FDLL structure, respectively. We speculate that COX-2 inhibitors offer an attractive alternative to current treatments for benign tumors such as OMX and FD that, apart from tumor suppression, may mechanically stabilize affected bones.


Assuntos
Celecoxib/uso terapêutico , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Displasia Fibrosa Óssea/tratamento farmacológico , Displasia Fibrosa Óssea/enzimologia , Animais , Apoptose/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Celecoxib/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/deficiência , Humanos , Inflamassomos/metabolismo , Ligantes , Camundongos , Via de Sinalização Wnt/efeitos dos fármacos
5.
J Bone Miner Res ; 31(8): 1608-1616, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26925839

RESUMO

Glycine (Gly) substitutions in collagen Gly-X-Y repeats disrupt folding of type I procollagen triple helix and cause severe bone fragility and malformations (osteogenesis imperfecta [OI]). However, these mutations do not elicit the expected endoplasmic reticulum (ER) stress response, in contrast to other protein-folding diseases. Thus, it has remained unclear whether cell stress and osteoblast malfunction contribute to the bone pathology caused by Gly substitutions. Here we used a mouse with a Gly610 to cysteine (Cys) substitution in the procollagen α2(I) chain to show that misfolded procollagen accumulation in the ER leads to an unusual form of cell stress, which is neither a conventional unfolded protein response (UPR) nor ER overload. Despite pronounced ER dilation, there is no upregulation of binding immunoglobulin protein (BIP) expected in the UPR and no activation of NF-κB signaling expected in the ER overload. Altered expression of ER chaperones αB crystalline and HSP47, phosphorylation of EIF2α, activation of autophagy, upregulation of general stress response protein CHOP, and osteoblast malfunction reveal some other adaptive response to the ER disruption. We show how this response alters differentiation and function of osteoblasts in culture and in vivo. We demonstrate that bone matrix deposition by cultured osteoblasts is rescued by activation of misfolded procollagen autophagy, suggesting a new therapeutic strategy for OI. © 2016 American Society for Bone and Mineral Research.


Assuntos
Colágeno Tipo I/genética , Mutação/genética , Osteoblastos/metabolismo , Osteogênese Imperfeita/patologia , Pró-Colágeno/química , Pró-Colágeno/metabolismo , Dobramento de Proteína , Estresse Fisiológico , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Matriz Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Osteoblastos/patologia , Osteoblastos/ultraestrutura , Osteogênese Imperfeita/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise
6.
Hum Mol Genet ; 24(21): 6080-92, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26246497

RESUMO

Carney Complex (CNC), a human genetic syndrome predisposing to multiple neoplasias, is associated with bone lesions such as osteochondromyxomas (OMX). The most frequent cause for CNC is PRKAR1A deficiency; PRKAR1A codes for type-I regulatory subunit of protein kinase A (PKA). Prkar1a(+/-) mice developed OMX, fibrous dysplasia-like lesions (FDL) and other tumors. Tumor tissues in these animals had increased PKA activity due to an unregulated PKA catalytic subunit and increased PKA type II (PKA-II) activity mediated by the PRKAR2A and PRKAR2B subunits. To better understand the effect of altered PKA activity on bone, we studied Prkar2a and Prkar2b knock out (KO) and heterozygous mice; none of these mice developed bone lesions. When Prkar2a(+/-) and Prkar2b(+/-) mice were used to generate Prkar1a(+/-)Prkar2a(+/-) and Prkar1a(+/-)Prkar2b(+/-) animals, bone lesions formed that looked like those of the Prkar1a(+/-) mice. However, better overall bone organization and mineralization and fewer FDL lesions were found in both double heterozygote groups, indicating a partial restoration of the immature bone structure observed in Prkar1a(+/-) mice. Further investigation indicated increased osteogenesis and higher new bone formation rates in both Prkar1a(+/-)Prkar2a(+/-) and Prkar1a(+/-)Prkar2b(+/-) mice with some minor differences between them. The observations were confirmed with a variety of markers and studies. PKA activity measurements showed the expected PKA-II decrease in both double heterozygote groups. Thus, haploinsufficiency for either of PKA-II regulatory subunits improved bone phenotype of mice haploinsufficient for Prkar1a, in support of the hypothesis that the PRKAR2A and PRKAR2B regulatory subunits were in part responsible for the bone phenotype of Prkar1a(+/-) mice.


Assuntos
Osso e Ossos/patologia , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Haploinsuficiência , Animais , Antígenos de Diferenciação/biossíntese , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Calcificação Fisiológica , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese , Fenótipo , Isoformas de Proteínas/metabolismo , Células Tumorais Cultivadas
7.
PLoS Genet ; 10(6): e1004465, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24968150

RESUMO

Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.


Assuntos
Colágeno Tipo I/genética , Ciclofilinas/genética , Osteogênese Imperfeita/genética , Processamento de Proteína Pós-Traducional/genética , Animais , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/patologia , Genes Recessivos , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mutação , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Dobramento de Proteína
8.
Hum Mutat ; 34(9): 1279-88, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23712425

RESUMO

Recessive mutations in FKBP10 at 17q21.2, encoding FKBP65, cause both osteogenesis imperfecta (OI) and Bruck syndrome (OI plus congenital contractures). Contractures are a variable manifestation of null/missense FKBP10 mutations. Kuskokwim syndrome (KS) is an autosomal recessive congenital contracture disorder found among Yup'ik Eskimos. Linkage mapping of KS to chromosome 17q21, together with contractures as a feature of FKBP10 mutations, made FKBP10 a candidate gene. We identified a homozygous three-nucleotide deletion in FKBP10 (c.877_879delTAC) in multiple Kuskokwim pedigrees; 3% of regional controls are carriers. The mutation deletes the highly conserved p.Tyr293 residue in FKBP65's third peptidyl-prolyl cis-trans isomerase domain. FKBP10 transcripts are normal, but mutant FKBP65 is destabilized to a residual 5%. Collagen synthesized by KS fibroblasts has substantially decreased hydroxylation of the telopeptide lysine crucial for collagen cross-linking, with 2%-10% hydroxylation in probands versus 60% in controls. Matrix deposited by KS fibroblasts has marked reduction in maturely cross-linked collagen. KS collagen is disorganized in matrix, and fibrils formed in vitro had subtle loosening of monomer packing. Our results imply that FKBP10 mutations affect collagen indirectly, by ablating FKBP65 support for collagen telopeptide hydroxylation by lysyl hydroxylase 2, thus decreasing collagen cross-links in tendon and bone matrix. FKBP10 mutations may also underlie other arthrogryposis syndromes.


Assuntos
Artrogripose/genética , Contratura/congênito , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Adulto , Cromossomos Humanos Par 17 , Colágeno/metabolismo , Feminino , Fibroblastos/metabolismo , Genes Recessivos , Ligação Genética , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Filogenia , Análise de Sequência de DNA
9.
Hum Mutat ; 33(11): 1589-98, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22718341

RESUMO

Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% over-modification. Normal chain incorporation, helix folding, and collagen T(m) support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix.


Assuntos
Colágeno/metabolismo , Mutação , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Proteínas de Ligação a Tacrolimo/deficiência , Proteínas de Ligação a Tacrolimo/genética , Sequência de Bases , Criança , Colágeno/química , Consanguinidade , Ciclofilinas/deficiência , Ciclofilinas/genética , Análise Mutacional de DNA , Matriz Extracelular/metabolismo , Feminino , Genes Recessivos , Humanos , Recém-Nascido , Masculino , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Osteogênese Imperfeita/classificação , Osteogênese Imperfeita/diagnóstico por imagem , Paquistão , Linhagem , Radiografia
10.
Nano Lett ; 12(7): 3613-20, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22694219

RESUMO

Despite their immense potential in biomedicine, carbon nanomaterials suffer from inefficient dispersion and biological activity in vivo. Here we utilize a single, yet multifunctional, hyaluronic acid-based biosurfactant to simultaneously disperse nanocarbons and target single-walled carbon nanotubes (SWCNTs) to CD44 receptor positive tumor cells with prompt uptake. Cellular uptake was monitored by intracellular enzyme-activated fluorescence, and localization of SWCNTs within cells was further confirmed by Raman mapping. In vivo photoacoustic, fluorescence, and positron emission tomography imaging of coated SWCNTs display high tumor targeting capability while providing long-term, fluorescence molecular imaging of targeted enzyme events. By utilizing a single biomaterial surfactant for SWCNT dispersion without additional bioconjugation, we designed a facile technique that brings nanocarbons closer to their biomedical potential.


Assuntos
Pesquisa Biomédica , Nanotubos de Carbono/química , Neoplasias Experimentais/patologia , Tensoativos/farmacocinética , Células 3T3 , Animais , Ácido Hialurônico/química , Camundongos , Modelos Biológicos , Solubilidade , Tensoativos/química , Distribuição Tecidual , Células Tumorais Cultivadas
11.
J Biol Chem ; 287(26): 22030-42, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22556422

RESUMO

Diastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is mild and normalizing with age, but the articular cartilage degrades with age and bones develop abnormally. To understand underlying mechanisms, we studied newborn dtd mice. We developed, verified and used high-definition infrared hyperspectral imaging of cartilage sections at physiological conditions, to quantify collagen and its orientation, noncollagenous proteins, and chondroitin chains, and their sulfation with 6-µm spatial resolution and without labeling. We found that chondroitin sulfation across the proximal femur cartilage varied dramatically in dtd, but not in the wild type. Corresponding undersulfation of dtd was mild in most regions, but strong in narrow articular and growth plate regions crucial for bone development. This undersulfation correlated with the chondroitin synthesis rate measured via radioactive sulfate incorporation, explaining the sulfation normalization with age. Collagen orientation was reduced, and the reduction correlated with chondroitin undersulfation. Such disorientation involved the layer of collagen covering the articular surface and protecting cartilage from degradation. Malformation of this layer may contribute to the degradation progression with age and to collagen and proteoglycan depletion from the articular region, which we observed in mice already at birth. The results provide clues to in vivo sulfation, DTD treatment, and cartilage growth.


Assuntos
Cartilagem/metabolismo , Condrócitos/citologia , Proteínas de Membrana Transportadoras/química , Mutação , Enxofre/química , Animais , Proteínas de Transporte de Ânions/genética , Colágeno/química , Matriz Extracelular/metabolismo , Fêmur/patologia , Glicosaminoglicanos/metabolismo , Lâmina de Crescimento/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Estatísticos , Fenótipo , Espectrofotometria Infravermelho/métodos , Transportadores de Sulfato , Sulfatos/química
12.
Proc Natl Acad Sci U S A ; 107(19): 8683-8, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421483

RESUMO

A population of stromal cells that retains osteogenic capacity in adult bone (adult bone stromal cells or aBSCs) exists and is under intense investigation. Mice heterozygous for a null allele of prkar1a (Prkar1a(+/-)), the primary receptor for cyclic adenosine monophosphate (cAMP) and regulator of protein kinase A (PKA) activity, developed bone lesions that were derived from cAMP-responsive osteogenic cells and resembled fibrous dysplasia (FD). Prkar1a(+/-) mice were crossed with mice that were heterozygous for catalytic subunit Calpha (Prkaca(+/-)), the main PKA activity-mediating molecule, to generate a mouse model with double heterozygosity for prkar1a and prkaca (Prkar1a(+/-)Prkaca(+/-)). Unexpectedly, Prkar1a(+/-)Prkaca(+/-) mice developed a greater number of osseous lesions starting at 3 months of age that varied from the rare chondromas in the long bones and the ubiquitous osteochondrodysplasia of vertebral bodies to the occasional sarcoma in older animals. Cells from these lesions originated from an area proximal to the growth plate, expressed osteogenic cell markers, and showed higher PKA activity that was mostly type II (PKA-II) mediated by an alternate pattern of catalytic subunit expression. Gene expression profiling confirmed a preosteoblastic nature for these cells but also showed a signature that was indicative of mesenchymal-to-epithelial transition and increased Wnt signaling. These studies show that a specific subpopulation of aBSCs can be stimulated in adult bone by alternate PKA and catalytic subunit activity; abnormal proliferation of these cells leads to skeletal lesions that have similarities to human FD and bone tumors.


Assuntos
Envelhecimento/patologia , Osso e Ossos/enzimologia , Osso e Ossos/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Animais , Osso e Ossos/diagnóstico por imagem , Calcificação Fisiológica , Domínio Catalítico , Heterozigoto , Mesoderma/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Análise Espectral Raman , Células Estromais/enzimologia , Células Estromais/patologia , Tomografia Computadorizada por Raios X
13.
Blood ; 114(2): 459-68, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19414862

RESUMO

Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [alpha1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases.


Assuntos
Envelhecimento/fisiologia , Transplante de Medula Óssea/métodos , Pesquisa Fetal , Osteogênese Imperfeita/prevenção & controle , Osteogênese Imperfeita/terapia , Útero/fisiologia , Animais , Células da Medula Óssea/citologia , Colágeno/metabolismo , Modelos Animais de Doenças , Espaço Extracelular/química , Feminino , Técnicas de Introdução de Genes , Genes Dominantes , Sobrevivência de Enxerto , Camundongos , Camundongos Transgênicos , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Fenótipo , Gravidez , Análise Espectral Raman , Taxa de Sobrevida , Doadores de Tecidos
14.
J Biol Chem ; 283(8): 4787-98, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18073209

RESUMO

We investigated regions of different helical stability within human type I collagen and discussed their role in intermolecular interactions and osteogenesis imperfecta (OI). By differential scanning calorimetry and circular dichroism, we measured and mapped changes in the collagen melting temperature (DeltaTm) for 41 different Gly substitutions from 47 OI patients. In contrast to peptides, we found no correlations of DeltaTm with the identity of the substituting residue. Instead, we observed regular variations in DeltaTm with the substitution location in different triple helix regions. To relate the DeltaTm map to peptide-based stability predictions, we extracted the activation energy of local helix unfolding (DeltaG) from the reported peptide data. We constructed the DeltaG map and tested it by measuring the H-D exchange rate for glycine NH residues involved in interchain hydrogen bonds. Based on the DeltaTm and DeltaG maps, we delineated regional variations in the collagen triple helix stability. Two large, flexible regions deduced from the DeltaTm map aligned with the regions important for collagen fibril assembly and ligand binding. One of these regions also aligned with a lethal region for Gly substitutions in the alpha1(I) chain.


Assuntos
Colágeno Tipo I/química , Osteogênese Imperfeita , Dobramento de Proteína , Dicroísmo Circular , Humanos , Mapeamento de Peptídeos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(6 Pt 1): 062503, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18233884

RESUMO

Details of condensed matter structure can alter microscopic-scale response to electric fields by orders of magnitude. It is shown that dipolar liquids near boundaries is an exception where the response can be virtually insensitive to such details and can sense mainly the macroscopic dielectric permittivity. This insensitivity is due to fluidity, symmetry properties, and location of the fields' charges outside the liquid or inside impermeable solute cavities, which is the ubiquitous location in molecular scale phenomena.

16.
J Phys Chem A ; 109(1): 44-56, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16839088

RESUMO

This paper reports measurements of static microscopic dielectric response of several dipolar solvents to charge redistribution in a fluorescent probe. Contrary to recent predictions of dielectric theories and computer simulations of bulk liquids, the observed dielectric response of most solvents conforms to the macroscopic continuum description even at atomic distances, as if these solvents had no spatial intermolecular structure. Such conformance is observed for several probes when the contribution of specific probe-solvent interactions to the response is negligible. However, water, formamide, and glycerol exhibit anomalous responses even though such a probe is used. We discuss a possible reason for the macroscopic-like behavior and a connection between the anomaly and fluctuating structures formed by anomalous solvents near the hydrophobic surface of the probe.


Assuntos
Solventes/química , Água/química , Elétrons , Microscopia , Modelos Moleculares , Estrutura Molecular , Pressão , Temperatura
17.
Biochemistry ; 43(47): 14901-12, 2004 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-15554697

RESUMO

We use direct infrared measurements to determine the number of binding sites, their dissociation constants, and preferential interaction parameters for inorganic phosphate and sulfate anions in collagen fibrils from rat tail tendons. In contrast to previous reports of up to 150 bound phosphates per collagen molecule, we find only 1-2 binding sites for sulfate and divalent phosphate under physiological conditions and approximately 10 binding sites at low ionic strength. The corresponding dissociation constants depend on NaCl concentration and pH and vary from approximately 50 microM to approximately 1-5 mM in the physiological range of pH. In fibrils, bound anions appear to form salt bridges between positively charged amino acid residues within regions of high excess positive charge. In solution, we found no evidence of appreciable sulfate or phosphate binding to isolated collagen molecules. Although sulfate and divalent phosphate bind to fibrillar collagen at physiological concentrations, our X-ray diffraction and in vitro fibrillogenesis experiments suggest that this binding plays little role in the formation, stability and structure of fibrils. In particular, we demonstrate that the previously reported increase in the critical fibrillogenesis concentration of collagen is caused by preferential exclusion of "free" (not bound to specific sites) sulfate and divalent phosphate from interstitial water in fibrils rather than by anion binding. Contrary to divalent phosphate, monovalent phosphate does not bind to collagen. It is preferentially excluded from interstitial water in fibrils, but it has no apparent effect on critical fibrillogenesis concentration at physiological NaCl and pH.


Assuntos
Ânions/química , Colágeno Tipo I/metabolismo , Fosfatos/metabolismo , Sulfatos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Colágeno Tipo I/química , Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo I/isolamento & purificação , Colágenos Fibrilares/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Dados de Sequência Molecular , Concentração Osmolar , Pepsina A/farmacologia , Ratos , Solubilidade , Soluções/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tendões/química , Termodinâmica , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA