Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Arch Biochem Biophys ; 717: 109137, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090868

RESUMO

Alkaptonuria (AKU) is an ultra-rare genetic disease caused by a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD) leading to the accumulation of homogentisic acid (HGA) on connective tissues. Even though AKU is a multi-systemic disease, osteoarticular cartilage is the most affected system and the most damaged tissue by the disease. In chondrocytes, HGA causes oxidative stress dysfunctions, which induce a series of not fully characterized cellular responses. In this study, we used a human chondrocytic cell line as an AKU model to evaluate, for the first time, the effect of HGA on autophagy, the main homeostasis system in articular cartilage. Cells responded timely to HGA treatment with an increase in autophagy as a mechanism of protection. In a chronic state, HGA-induced oxidative stress decreased autophagy, and chondrocytes, unable to restore balance, activated the chondroptosis pathway. This decrease in autophagy also correlated with the accumulation of ochronotic pigment, a hallmark of AKU. Our data suggest new perspectives for understanding AKU and a mechanistic model that rationalizes the damaging role of HGA.


Assuntos
Alcaptonúria/prevenção & controle , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Homogentisato 1,2-Dioxigenase/metabolismo , Ácido Homogentísico/metabolismo , Alcaptonúria/metabolismo , Apoptose/efeitos dos fármacos , Cartilagem Articular/efeitos dos fármacos , Linhagem Celular , Condrócitos/citologia , Ácido Homogentísico/farmacologia , Humanos , Ocronose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
2.
J Cell Physiol ; 236(8): 6011-6024, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33469937

RESUMO

Alkaptonuria (AKU) is an ultra-rare disease caused by the deficient activity of homogentisate 1,2-dioxygenase enzyme, leading the accumulation of homogentisic acid (HGA) in connective tissues implicating the formation of a black pigmentation called "ochronosis." Although AKU is a multisystemic disease, the most affected tissue is the articular cartilage, which during the pathology appears to be highly damaged. In this study, a model of alkaptonuric chondrocytes and cartilage was realized to investigate the role of HGA in the alteration of the extracellular matrix (ECM). The AKU tissues lost its architecture composed of collagen, proteoglycans, and all the proteins that characterize the ECM. The cause of this alteration in AKU cartilage is attributed to a degeneration of the cytoskeletal network in chondrocytes caused by the accumulation of HGA. The three cytoskeletal proteins, actin, vimentin, and tubulin, were analyzed and a modification in their amount and disposition in AKU chondrocytes model was identified. Cytoskeleton is involved in many fundamental cellular processes; therefore, the aberration in this complex network is involved in the manifestation of AKU disease.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Ácido Homogentísico/farmacologia , Actinas/efeitos dos fármacos , Actinas/metabolismo , Alcaptonúria/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Ocronose/tratamento farmacológico , Vimentina/efeitos dos fármacos , Vimentina/metabolismo
3.
Comput Biol Med ; 122: 103863, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658739

RESUMO

ApreciseKUre is a multi-purpose digital platform facilitating data collection, integration and analysis for patients affected by Alkaptonuria (AKU), an ultra-rare autosomal recessive genetic disease. We present an ApreciseKUre plugin, called AKUImg, dedicated to the storage and analysis of AKU histopathological slides, in order to create a Precision Medicine Ecosystem (PME), where images can be shared among registered researchers and clinicians to extend the AKU knowledge network. AKUImg includes a new set of AKU images taken from cartilage tissues acquired by means of a microscopic technique. The repository, in accordance to ethical policies, is publicly available after a registration request, to give to scientists the opportunity to study, investigate and compare such precious resources. AKUImg is also integrated with a preliminary but accurate predictive system able to discriminate the presence/absence of AKU by comparing histopatological affected/control images. The algorithm is based on a standard image processing approach, namely histogram comparison, resulting to be particularly effective in performing image classification, and constitutes a useful guide for non-AKU researchers and clinicians.


Assuntos
Alcaptonúria , Alcaptonúria/diagnóstico por imagem , Cartilagem/diagnóstico por imagem , Bases de Dados Factuais , Ecossistema , Humanos , Medicina de Precisão
4.
Orphanet J Rare Dis ; 15(1): 46, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050984

RESUMO

BACKGROUND: Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease caused by a mutation in the homogentisate 1,2-dioxygenase (HGD) gene. One of the main obstacles in studying AKU, and other ultra-rare diseases, is the lack of a standardized methodology to assess disease severity or response to treatment. Quality of Life scores (QoL) are a reliable way to monitor patients' clinical condition and health status. QoL scores allow to monitor the evolution of diseases and assess the suitability of treatments by taking into account patients' symptoms, general health status and care satisfaction. However, more comprehensive tools to study a complex and multi-systemic disease like AKU are needed. In this study, a Machine Learning (ML) approach was implemented with the aim to perform a prediction of QoL scores based on clinical data deposited in the ApreciseKUre, an AKU- dedicated database. METHOD: Data derived from 129 AKU patients have been firstly examined through a preliminary statistical analysis (Pearson correlation coefficient) to measure the linear correlation between 11 QoL scores. The variable importance in QoL scores prediction of 110 ApreciseKUre biomarkers has been then calculated using XGBoost, with K-nearest neighbours algorithm (k-NN) approach. Due to the limited number of data available, this model has been validated using surrogate data analysis. RESULTS: We identified a direct correlation of 6 (age, Serum Amyloid A, Chitotriosidase, Advanced Oxidation Protein Products, S-thiolated proteins and Body Mass Index) out of 110 biomarkers with the QoL health status, in particular with the KOOS (Knee injury and Osteoarthritis Outcome Score) symptoms (Relative Absolute Error (RAE) 0.25). The error distribution of surrogate-model (RAE 0.38) was unequivocally higher than the true-model one (RAE of 0.25), confirming the consistency of our dataset. Our data showed that inflammation, oxidative stress, amyloidosis and lifestyle of patients correlates with the QoL scores for physical status, while no correlation between the biomarkers and patients' mental health was present (RAE 1.1). CONCLUSIONS: This proof of principle study for rare diseases confirms the importance of database, allowing data management and analysis, which can be used to predict more effective treatments.


Assuntos
Alcaptonúria , Qualidade de Vida , Gerenciamento de Dados , Humanos , Aprendizado de Máquina , Doenças Raras
5.
J Cell Physiol ; 235(10): 6808-6816, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31989660

RESUMO

Alkaptonuria (AKU) is a rare disease correlated with deficiency of the enzyme homogentisate 1,2 dioxygenase, which causes homogentisic acid (HGA) accumulation. HGA is subjected to oxidation/polymerization reactions, leading to the production of a peculiar melanin-like pigmentation (ochronosis) after chronic inflammation, which is considered as a triggering event for the generation of oxidative stress. Clinical manifestations of AKU are urine darkening, sclera pigmentation, early severe osteoarthropathy, and cardiovascular and renal complication. Despite major clinical manifestations of AKU being observed in the bones and skeleton, the molecular and functional parameters are so far unknown in AKU. In the present study, we used human osteoblasts supplemented with HGA as a AKU cellular model. We observed marked oxidative stress, and for the first time, we were able to correlate HGA deposition with an impairment in the Wnt/ß-catenin signaling pathway, opening a range of possible therapeutic strategies for a disease still lacking a known cure.


Assuntos
Ácido Homogentísico/farmacologia , Osteoblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Alcaptonúria/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Células Cultivadas , Humanos , Inflamação/metabolismo , Melaninas/metabolismo , Ocronose/metabolismo , Osteoblastos/metabolismo , Oxirredução/efeitos dos fármacos , Pigmentação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
FASEB J ; 33(11): 12696-12703, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31462106

RESUMO

Alkaptonuria (AKU) is an ultrarare autosomal recessive disorder (MIM 203500) that is caused byby a complex set of mutations in homogentisate 1,2-dioxygenasegene and consequent accumulation of homogentisic acid (HGA), causing a significant protein oxidation. A secondary form of amyloidosis was identified in AKU and related to high circulating serum amyloid A (SAA) levels, which are linked with inflammation and oxidative stress and might contribute to disease progression and patients' poor quality of life. Recently, we reported that inflammatory markers (SAA and chitotriosidase) and oxidative stress markers (protein thiolation index) might be disease activity markers in AKU. Thanks to an international network, we collected genotypic, phenotypic, and clinical data from more than 200 patients with AKU. These data are currently stored in our AKU database, named ApreciseKUre. In this work, we developed an algorithm able to make predictions about the oxidative status trend of each patient with AKU based on 55 predictors, namely circulating HGA, body mass index, total cholesterol, SAA, and chitotriosidase. Our general aim is to integrate the data of apparently heterogeneous patients with AKUAKU by using specific bioinformatics tools, in order to identify pivotal mechanisms involved in AKU for a preventive, predictive, and personalized medicine approach to AKU.-Cicaloni, V., Spiga, O., Dimitri, G. M., Maiocchi, R., Millucci, L., Giustarini, D., Bernardini, G., Bernini, A., Marzocchi, B., Braconi, D., Santucci, A. Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease.


Assuntos
Alcaptonúria , Biologia Computacional , Bases de Dados Genéticas , Medicina de Precisão , Doenças Raras , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Alcaptonúria/terapia , Feminino , Humanos , Masculino , Doenças Raras/metabolismo , Doenças Raras/patologia , Doenças Raras/terapia
7.
J Cell Physiol ; 234(5): 6696-6708, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30341892

RESUMO

Alkaptonuria (AKU) is a disease caused by a deficient homogentisate 1,2-dioxygenase activity leading to systemic accumulation of homogentisic acid (HGA), that forms a melanin-like polymer that progressively deposits onto connective tissues causing a pigmentation called "ochronosis" and tissue degeneration. The effects of AKU and ochronotic pigment on the biomechanical properties of articular cartilage need further investigation. To this aim, AKU cartilage was studied using thermal (thermogravimetry and differential scanning calorimetry) and rheological analysis. We found that AKU cartilage had a doubled mesopore radius compared to healthy cartilage. Since the mesoporous structure is the main responsible for maintaining a correct hydrostatic pressure and tissue homoeostasis, drastic changes of thermal and rheological parameters were found in AKU. In particular, AKU tissue lost its capability to enhance chondrocytes metabolism (decreased heat capacity) and hence the production of proteoglycans. A drastic increase in stiffness and decrease in dissipative and lubricant role ensued in AKU cartilage. Multiphoton and scanning electron microscopies revealed destruction of cell-matrix microstructure and disruption of the superficial layer. Such observations on AKU specimens were confirmed in HGA-treated healthy cartilage, indicating that HGA is the toxic responsible of morphological and mechanical alterations of cartilage in AKU.


Assuntos
Alcaptonúria/tratamento farmacológico , Condrócitos/efeitos dos fármacos , Ácido Homogentísico/farmacologia , Ocronose/tratamento farmacológico , Alcaptonúria/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Pigmentação/efeitos dos fármacos
8.
Comput Biol Med ; 103: 1-7, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30316064

RESUMO

This paper describes our experience with the development and implementation of a database for the rare disease Alkaptonuria (AKU, OMIM: 203500). AKU is an autosomal recessive disorder caused by a gene mutation leading to the accumulation of homogentisic acid (HGA). Analogously to other rare conditions, currently there are no approved biomarkers to monitor AKU progression or severity. Although some biomarkers are under evaluation, an extensive biomarker analysis has not been undertaken in AKU yet. In order to fill this gap, we gained access to AKU-related data that we carefully processed, documented and stored in a database, which we named ApreciseKUre. We undertook a suitable statistical analysis by associating every couple of potential biomarkers to highlight significant correlations. Our database is continuously updated allowing us to find novel unpredicted correlations between AKU biomarkers and to confirm system reliability. ApreciseKUre includes data on potential biomarkers, patients' quality of life and clinical outcomes facilitating their integration and possibly allowing a Precision Medicine approach in AKU. This framework may represent an online tool that can be turned into a best practice model for other rare diseases.


Assuntos
Alcaptonúria , Bases de Dados Factuais , Medicina de Precisão/métodos , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Alcaptonúria/fisiopatologia , Biomarcadores , Interpretação Estatística de Dados , Humanos , Doenças Raras , Interface Usuário-Computador
9.
Expert Rev Proteomics ; 15(2): 153-164, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29271263

RESUMO

INTRODUCTION: In the post-genomic era, the opportunity to combine and integrate cutting-edge analytical platforms and data processing systems allowed the birth of foodomics, 'a discipline that studies the Food and Nutrition domains through the application of advanced omics technologies to improve consumer's well-being, health, and confidence'. Since then, this discipline has rapidly evolved and researchers are now facing the daunting tasks to meet consumers' needs in terms of food traceability, sustainability, quality, safety and integrity. Most importantly, today it is imperative to provide solid evidence of the mechanisms through which food can promote human health and well-being. Areas covered: In this review, the complex relationships connecting food, nutrition and human health will be discussed, with emphasis on the relapses for the development of functional foods and nutraceuticals, personalized nutrition approaches, and the study of the interplay among gut microbiota, diet and health/diseases. Expert commentary: Evidence has been provided supporting the role of various omic platforms in studying the health-promoting effects of food and customized dietary interventions. However, although associated to major analytical challenges, only the proper integration of multi-omics studies and the implementation of bioinformatics tools and databases will help translate findings from clinical practice into effective personalized treatment strategies.


Assuntos
Dietética/métodos , Nutrigenômica/métodos , Proteômica/métodos , Dietoterapia/métodos , Dietética/tendências , Análise de Alimentos/métodos , Humanos
10.
Calcif Tissue Int ; 101(1): 50-64, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28271171

RESUMO

Alkaptonuria (AKU) is a hereditary disorder that results from altered structure and function of homogentisate 1,2 dioxygenase (HGD). This enzyme, predominantly produced by liver and kidney, is responsible for the breakdown of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway. A deficient HGD activity causes HGA levels to rise systemically. The disease is clinically characterized by homogentisic aciduria, bluish-black discoloration of connective tissues (ochronosis) and joint arthropathy. Additional manifestations are cardiovascular abnormalities, renal, urethral and prostate calculi and scleral and ear involvement. While the radiological aspect of ochronotic spondyloarthropathy is known, there are only few data regarding an exhaustive ultrastructural and histologic study of different tissues in AKU. Moreover, an in-depth analysis of tissues from patients of different ages, having varied symptoms, is currently lacking. A complete microscopic and ultrastructural analysis of different AKU tissues, coming from six differently aged patients, is here presented thus significantly contributing to a more comprehensive knowledge of this ultra-rare pathology.


Assuntos
Alcaptonúria/patologia , Adulto , Idoso , Alcaptonúria/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ocronose/etiologia , Ocronose/patologia
11.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1000-1008, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28192171

RESUMO

BACKGROUND: Alkaptonuria (AKU) is an ultra-rare disease associated to the lack of an enzyme involved in tyrosine catabolism. This deficiency results in the accumulation of homogentisic acid (HGA) in the form of ochronotic pigment in joint cartilage, leading to a severe arthropathy. Secondary amyloidosis has been also unequivocally assessed as a comorbidity of AKU arthropathy. Composition of ochronotic pigment and how it is structurally related to amyloid is still unknown. METHODS: We exploited Synchrotron Radiation Infrared and X-Ray Fluorescence microscopies in combination with conventional bio-assays and analytical tools to characterize chemical composition and morphology of AKU cartilage. RESULTS: We evinced that AKU cartilage is characterized by proteoglycans depletion, increased Sodium levels, accumulation of lipids in the peri-lacunar regions and amyloid formation. We also highlighted an increase of aromatic compounds and oxygen-containing species, depletion in overall Magnesium content (although localized in the peri-lacunar region) and the presence of calcium carbonate fragments in proximity of cartilage lacunae. CONCLUSIONS: We highlighted common features between AKU and arthropathy, but also specific signatures of the disease, like presence of amyloids and peculiar calcifications. Our analyses provide a unified picture of AKU cartilage, shedding a new light on the disease and opening new perspectives. GENERAL SIGNIFICANCE: Ochronotic pigment is a hallmark of AKU and responsible of tissue degeneration. Conventional bio-assays have not yet clarified its composition and its structural relationship with amyloids. The present work proposes new strategies for filling the aforementioned gap that encompass the integration of new analytical approaches with standardized analyses.


Assuntos
Alcaptonúria/patologia , Doenças Raras/metabolismo , Doenças Raras/patologia , Alcaptonúria/metabolismo , Amiloidose/metabolismo , Amiloidose/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Fluorescência , Ácido Homogentísico/metabolismo , Humanos , Lipídeos/fisiologia , Magnésio/metabolismo , Microscopia/métodos , Pigmentos Biológicos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Raios X
12.
J Cell Physiol ; 232(11): 3103-3111, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28019670

RESUMO

Alkaptonuria (AKU) is an ultra-rare genetic disease, in which the accumulation of a toxic metabolite, homogentisic acid (HGA) leads to the systemic development of ochronotic aggregates. These aggregates cause severe complications mainly at the level of joints with extensive degradation of the articular cartilage. Primary cilia have been demonstrated to play an essential role in development and the maintenance of articular cartilage homeostasis, through their involvement in mechanosignaling and Hedgehog signaling pathways. Hedgehog signaling has been demonstrated to be activated in osteoarthritis (OA) and to drive cartilage degeneration in vivo. The numerous similarities between OA and AKU suggest that primary cilia Hedgehog signaling may also be altered in AKU. Thus, we characterized an AKU cellular model in which healthy chondrocytes were treated with HGA (66 µM) to replicate AKU cartilage pathology. We investigated the degree of activation of the Hedgehog signaling pathway and how treatment with inhibitors of the receptor Smoothened (Smo) influenced Hedgehog activation and primary cilia structure. The results obtained in this work provide a further step in the comprehension of the pathophysiological features of AKU, suggesting a potential therapeutic approach to modulate AKU cartilage degradation processes through manipulation of the Hedgehog pathway.


Assuntos
Alcaptonúria/induzido quimicamente , Anilidas/farmacologia , Condrócitos/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Ácido Homogentísico/toxicidade , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/antagonistas & inibidores , Alcaloides de Veratrum/farmacologia , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/patologia , Relação Dose-Resposta a Droga , Humanos , Hiperpigmentação/induzido quimicamente , Hiperpigmentação/metabolismo , Receptor Smoothened/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
13.
Biochim Biophys Acta Gen Subj ; 1861(2): 135-146, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27865997

RESUMO

BACKGROUND: Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism characterized by homogentisic acid (HGA) accumulation due to a deficient activity of the homogentisate 1.2-dioxygenase (HGD) enzyme. This leads to the production of dark pigments that are deposited onto connective tissues, a condition named 'ochronosis' and whose mechanisms are not completely clear. Recently, the potential role of hitherto unidentified proteins in the ochronotic process was hypothesized, and the presence of Serum Amyloid A (SAA) in alkaptonuric tissues was reported, allowing the classification of AKU as a novel secondary amyloidosis. METHODS: Gel electrophoresis, Western Blot, Congo Red-based assays and electron microscopy were used to investigate the effects of HGA on the aggregation and fibrillation propensity of amyloidogenic proteins and peptides [Aß(1-42), transthyretin, atrial natriuretic peptide, α-synuclein and SAA]. LC/MS and in silico analyses were undertaken to identify possible binding sites for HGA (or its oxidative metabolite, a benzoquinone acetate or BQA) in SAA. RESULTS: We found that HGA might act as an amyloid aggregation enhancer in vitro for all the tested proteins and peptides in a time- and dose- dependent fashion, and identified a small crevice at the interface between two HGD subunits as a candidate binding site for HGA/BQA. CONCLUSIONS: HGA might be an important amyloid co- component playing significant roles in AKU amyloidosis. GENERAL SIGNIFICANCE: Our results provide a possible explanation for the clinically verified onset of amyloidotic processes in AKU and might lay the basis to setup proper pharmacological approaches to alkaptonuric ochronosis, which are still lacking.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Ácido Homogentísico/farmacologia , Agregação Patológica de Proteínas/induzido quimicamente , Alcaptonúria/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Fator Natriurético Atrial/metabolismo , Sítios de Ligação/efeitos dos fármacos , Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Homogentisato 1,2-Dioxigenase/metabolismo , Humanos , Ocronose/metabolismo , Oxirredução/efeitos dos fármacos , Pré-Albumina/metabolismo , Proteína Amiloide A Sérica/metabolismo , alfa-Sinucleína/metabolismo
14.
JIMD Rep ; 31: 51-56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27074788

RESUMO

OBJECTIVES: Two methods are described for homogentisic acid (HGA) determination in dried urine spots (DUS) on paper from Alkaptonuria (AKU) patients, devised for quick early diagnosis. AKU is a rare autosomal recessive disorder caused by deficiency of homogentisate 1,2-dioxygenase, yielding in accumulation of HGA. Its massive excretion causes urine darkening by exposure to air or alkalinization, and is a diagnostic marker. The deposition of polymers produced after HGA oxidation within the connective tissues causes ochronotic arthritis, a degenerative joint disease manifesting in adulthood and only rarely in childhood. No early diagnosis is usually accomplished, awareness following symptom development. DESIGN AND METHODS: Two methods were designed for HGA determination in DUS: (1) a rapid semi-quantitative reliable method based on colour development in alkali and quantification by comparison with dried paper spots from HGA solutions of known concentration and (2) a quantitative and sensitive HPLC-linked method, previously devised for purine and pyrimidine analysis in urine and plasma. RESULTS: Colour intensity developed by DUS after alkali addition was proportional to HGA concentration, and calculated amounts were in good agreement with quantitative analysis performed by RP-HPLC on DUS and on urines as such. CONCLUSIONS: DUS, often used for different diagnostic purpose, are easily prepared and safely delivered. The simple and quick colour method proposed provides reliable HGA assessment and is fit for large screening. HGA concentration determined in 10 AKU patient DUS by both methods 1 and 2 was in agreement with direct urine assay and in the range reported by literature.A reliable HGA quantification based on colour development in paper urine spots is validated by HPLC-linked HGA quantification, and proposed as a quick diagnostic tool for AKU patients.

15.
J Cell Physiol ; 232(7): 1728-1738, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27454006

RESUMO

Alkaptonuria (AKU) is an ultra-rare autosomal genetic disorder caused by a defect in the activity of the enzyme homogentisate 1,2-dioxygenase (HGD) that leads to the accumulation of homogentisic acid (HGA) and its oxidized product, benzoquinone acetic acid (BQA), in the connective tissues causing a pigmentation called "ochronosis." The consequent progressive formation of ochronotic aggregates generate a severe condition of oxidative stress and inflammation in all the affected areas. Experimental evidences have also proved the presence of serum amyloid A (SAA) in several AKU tissues and it allowed classifying AKU as a secondary amyloidosis. Although AKU is a multisystemic disease, the most affected system is the osteoarticular one and articular cartilage is the most damaged tissue. In this work, we have analyzed for the first time the cytoskeleton of AKU chondrocytes by means of immunofluorescence staining. We have shown the presence of SAA within AKU chondrocytes and finally we have demonstrated the co-localization of SAA with three cytoskeletal proteins: actin, vimentin, and ß-tubulin. Furthermore, in order to observe the ultrastructural features of AKU chondrocytes we have performed TEM analysis, focusing on the Golgi apparatus structure and, to demonstrate that pigmented areas in AKU cartilage are correspondent to areas of oxidation, 4-HNE presence has been evaluated by means of immunofluorescence. J. Cell. Physiol. 232: 1728-1738, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Alcaptonúria/patologia , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Adulto , Idoso , Aldeídos/metabolismo , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Estudos de Casos e Controles , Condrócitos/ultraestrutura , Citoesqueleto/ultraestrutura , Feminino , Imunofluorescência , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Peroxidação de Lipídeos , Masculino , Pessoa de Meia-Idade , Pigmentos Biológicos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
16.
J Inherit Metab Dis ; 39(6): 801-806, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671890

RESUMO

Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of AKU treatment is palliative and little is known about its physiopathology. Neovascularization is involved in the pathogenesis of systemic inflammatory rheumatic diseases, a family of related disorders that includes AKU. Here, we investigated the presence of neoangiogenesis in AKU synovium and healthy controls. Synovium from AKU patients, who had undergone total joint replacement or arthroscopy, or from healthy patients without any history of rheumatic diseases, who underwent surgical operation following sport trauma was subjected to hematoxylin and eosin staining. Histologic grades were assigned for clinical disease activity and synovitis based on cellular content of the synovium. By immunofluorescence microscopy, using different endothelial cell markers, we observed large vascularization in AKU but not in healthy synovium. Moreover, Western blotting and quantification analyses confirmed strong expression of endothelial cell markers in AKU synovial tissues. Importantly, AKU synovium vascular endothelium expressed high levels of ß-dystroglycan, a protein previously involved in the regulation of angiogenesis in osteoarthritic synovium. This is the first report providing experimental evidences that new blood vessels are formed in AKU synovial tissues, opening new perspectives for AKU therapy.


Assuntos
Alcaptonúria/patologia , Neovascularização Patológica/patologia , Alcaptonúria/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Distroglicanas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Membrana Sinovial/patologia
17.
Int J Biochem Cell Biol ; 81(Pt B): 271-280, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27590860

RESUMO

Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism associated with a defective catabolism of phenylalanine and tyrosine leading to increased systemic levels of homogentisic acid (HGA). Excess HGA is partly excreted in the urine, partly accumulated within the body and deposited onto connective tissues under the form of an ochronotic pigment, leading to a range of clinical manifestations. No clear genotype/phenotype correlation was found in AKU, and today there is the urgent need to identify biomarkers able to monitor AKU progression and evaluate response to treatment. With this aim, we provided the first proteomic study on serum and plasma samples from alkaptonuric individuals showing pathological SAA, CRP and Advanced Oxidation Protein Products (AOPP) levels. Interesting similarities with proteomic studies on other rheumatic diseases were highlighted together with proteome alterations supporting the existence of oxidative stress and inflammation in AKU. Potential candidate biomarkers to assess disease severity, monitor disease progression and evaluate response to treatment were identified as well.


Assuntos
Alcaptonúria/sangue , Alcaptonúria/urina , Biomarcadores/sangue , Biomarcadores/urina , Inflamação/fisiopatologia , Estresse Oxidativo , Proteoma , Produtos da Oxidação Avançada de Proteínas/sangue , Produtos da Oxidação Avançada de Proteínas/urina , Idoso , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica
18.
ChemMedChem ; 11(7): 674-8, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26947423

RESUMO

Alkaptonuria (AKU) is a rare multisystem metabolic disease caused by deficient activity of homogentisate 1,2-dioxygenase (HGD), which leads to the accumulation of homogentisic acid (HGA). Currently, there is no treatment for AKU. The sole drug with some beneficial effects is the herbicide nitisinone (1), an inhibitor of p-hydroxyphenylpyruvate dioxygenase (4-HPPD). 1 has been used as a life-saving drug in infants with type I tyrosinemia despite severe side effects due to the buildup of tyrosine. Four clinical trials of nitisinone to treat AKU have shown that 1 consistently decreases HGA levels, but also caused the accumulation of tyrosine in blood serum. Moreover, the human preclinical toxicological data for 1 are incomplete. In this work, we performed pharmacodynamics and toxicological evaluations of 1, providing the first report of LD50 values in human cells. Intracellular tyrosinemia was also evaluated. Three additional 4-HPPD inhibitors with a more favorable profile than that of 1 in terms of IC50, LD50, and tyrosine accumulation were also identified among commercially available compounds. These may be promising starting points for the development of new therapeutic strategies for the treatment of AKU.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Alcaptonúria/tratamento farmacológico , Cicloexanonas/química , Cicloexanonas/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Ácido Homogentísico/metabolismo , Nitrobenzoatos/química , Nitrobenzoatos/farmacologia , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Alcaptonúria/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Cicloexanonas/síntese química , Relação Dose-Resposta a Droga , Herbicidas/síntese química , Humanos , Masculino , Estrutura Molecular , Nitrobenzoatos/síntese química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
19.
J Inherit Metab Dis ; 38(5): 797-805, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25868666

RESUMO

Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism developed from the lack of homogentisic acid oxidase activity, causing homogentisic acid (HGA) accumulation that produces an HGA-melanin ochronotic pigment, of hitherto unknown composition. Besides the accumulation of HGA, the potential role and presence of unidentified proteins has been hypothesized as additional causal factors involved in ochronotic pigment deposition. Evidence has been provided on the presence of serum amyloid A (SAA) in several AKU tissues, which allowed classifying AKU as a novel secondary amyloidosis. In this paper, we will briefly review all direct and indirect lines of evidence related to the presence of amyloidosis in AKU. We also report the first data on abnormal SAA serum levels in a cohort of AKU patients.


Assuntos
Alcaptonúria/complicações , Amiloidose/etiologia , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Amiloidose/metabolismo , Amiloidose/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Humanos , Inflamação/complicações , Inflamação/metabolismo , Inflamação/patologia , Ocronose/complicações , Ocronose/metabolismo , Ocronose/patologia , Estresse Oxidativo/fisiologia , Coloração e Rotulagem/métodos
20.
J Cell Physiol ; 230(11): 2718-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25809010

RESUMO

Osteosarcoma (OS) is a primary highly malignant tumor of bone, affecting predominately adolescents and young adults between 10 and 20 years of age. OS is characterized by an extremely aggressive clinical course, with a rapid development of metastasis to the lung and distant bones.


Assuntos
Linhagem Celular Tumoral , Osteossarcoma/patologia , Cultura Primária de Células , Adolescente , Feminino , Humanos , Itália , Masculino , Osteossarcoma/tratamento farmacológico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA