Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Front Nutr ; 10: 1190392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565037

RESUMO

Introduction: In humans, adversity in childhood exerts enduring effects on brain and increases the vulnerability to psychiatric diseases. It also leads to a higher risk of eating disorders and obesity. Maternal separation (MS) in mice has been used as a proxy of stress during infancy. We hypothesized that MS in mice affects motivation to obtain palatable food in adulthood and changes gene expression in reward system. Methods: Male and female pups from C57Bl/6J and C3H/HeN mice strains were subjected to a daily MS protocol from postnatal day (PND) 2 to PND14. At adulthood, their motivation for palatable food reward was assessed in operant cages. Results: Compared to control mice, male and female C3H/HeN mice exposed to MS increased their instrumental response for palatable food, especially when the effort required to obtain the reward was high. Importantly, this effect is shown in animals fed ad libitum. Transcriptional analysis revealed 375 genes differentially expressed in the nucleus accumbens of male MS C3H/HeN mice compared to the control group, some of these being associated with the regulation of the reward system (e.g., Gnas, Pnoc). Interestingly, C57Bl/6J mice exposed to MS did not show alterations in their motivation to obtain a palatable reward, nor significant changes in gene expression in the nucleus accumbens. Conclusion: MS produces long-lasting changes in motivation for palatable food in C3H/HeN mice, but has no impact in C57Bl/6J mice. These behavioral alterations are accompanied by drastic changes in gene expression in the nucleus accumbens, a key structure in the regulation of motivational processes.

2.
Diabetologia ; 66(9): 1735-1747, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300580

RESUMO

AIMS/HYPOTHESIS: Children with diabetes may display cognitive alterations although vascular disorders have not yet appeared. Variations in glucose levels together with relative insulin deficiency in treated type 1 diabetes have been reported to impact brain function indirectly through dysregulation of the hypothalamus-pituitary-adrenal axis. We have recently shown that enhancement of glucocorticoid levels in children with type 1 diabetes is dependent not only on glucocorticoid secretion but also on glucocorticoid tissue concentrations, which is linked to 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) activity. Hypothalamus-pituitary-adrenal axis dysfunction and memory alteration were further dissected in a juvenile rat model of diabetes showing that excess 11ß-HSD1 activity within the hippocampus is associated with hippocampal-dependent memory deficits. Here, to investigate the causal relationships between diabetes, 11ß-HSD1 activity and hippocampus-dependent memory deficits, we evaluated the beneficial effect of 11ß-HSD1 inhibition on hippocampal-related memory in juvenile diabetic rats. We also examined whether diabetes-associated enhancement of hippocampal 11ß-HSD1 activity is due to an increase in brain glucose concentrations and/or a decrease in insulin signalling. METHODS: Diabetes was induced in juvenile rats by daily i.p. injection of streptozotocin for 2 consecutive days. Inhibition of 11ß-HSD1 was obtained by administrating the compound UE2316 twice daily by gavage for 3 weeks, after which hippocampal-dependent object location memory was assessed. Hippocampal 11ß-HSD1 activity was estimated by the ratio of corticosterone/dehydrocorticosterone measured by LC/MS. Regulation of 11ß-HSD1 activity in response to changes in glucose or insulin levels was determined ex vivo on acute brain hippocampal slices. The insulin regulation of 11ß-HSD1 was further examined in vivo using virally mediated knockdown of insulin receptor expression specifically in the hippocampus. RESULTS: Our data show that inhibiting 11ß-HSD1 activity prevents hippocampal-related memory deficits in diabetic juvenile rats. A significant increase (53.0±9.9%) in hippocampal 11ß-HSD1 activity was found in hippocampal slices incubated in high glucose conditions (13.9 mmol/l) vs normal glucose conditions (2.8 mmol/l) without insulin. However, 11ß-HSD1 activity was not affected by variations in insulin concentration either in the hippocampal slices or after a decrease in hippocampal insulin receptor expression. CONCLUSIONS/INTERPRETATION: Together, these data demonstrate that an increase in 11ß-HSD1 activity contributes to memory deficits observed in juvenile diabetic rats and that an excess of hippocampal 11ß-HSD1 activity stems from high glucose levels rather than insulin deficiency. 11ß-HSD1 might be a therapeutic target for treating cognitive impairments associated with diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ratos , Animais , Insulina/metabolismo , Glucocorticoides , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Receptor de Insulina , Transtornos da Memória , Glucose/farmacologia
3.
J Neuroendocrinol ; 35(2): e13203, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36221223

RESUMO

Dissociation between the healthy and toxic effects of cortisol, a major stress-responding hormone has been a widely used strategy to develop anti-inflammatory glucocorticoids with fewer side effects. Such strategy falls short when treating brain disorders as timing and activity state within large-scale neuronal networks determine the physiological and behavioral specificity of cortisol response. Advances in structural molecular dynamics posit the bases for engineering glucocorticoids with precision bias for select downstream signaling pathways. Design of allosteric and/or cooperative control for the glucocorticoid receptor could help promote the beneficial and reduce the deleterious effects of cortisol on brain and behavior in disease conditions.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Anti-Inflamatórios/farmacologia , Transdução de Sinais
4.
Metabol Open ; 15: 100202, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35958117

RESUMO

Both diabetes types, types 1 and 2, are associated with cognitive impairments. Each period of life is concerned, and this is an increasing public health problem. Animal models have been developed to investigate the biological actors involved in such impairments. Many levels of the brain function (structure, volume, neurogenesis, neurotransmission, behavior) are involved. In this review, we detailed the part potentially played by the Hypothalamic-Pituitary Adrenal axis in these dysfunctions. Notably, regulating glucocorticoid levels, their receptors and their bioavailability appear to be relevant for future research studies, and treatment development.

6.
Psychoneuroendocrinology ; 136: 105594, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34875421

RESUMO

Chronic stress and the gut microbiota appear to comprise a feed-forward loop, which contributes to the development of depressive disorders. Evidence suggests that memory can also be impaired by either chronic stress or microbiota imbalance. However, it remains to be established whether these could be a part of an integrated loop model and be responsible for memory impairments. To shed light on this, we used a two-pronged approach in Japanese quail: first stress-induced alterations in gut microbiota were characterized, then we tested whether this altered microbiota could affect brain and memory function when transferred to a germ-free host. The cecal microbiota of chronically stressed quails was found to be significantly different from that of unstressed individuals with lower α and ß diversities and increased Bacteroidetes abundance largely represented by the Alistipes genus, a well-known stress target in rodents and humans. The transfer of this altered microbiota into germ-free quails decreased their spatial and cue-based memory abilities as previously demonstrated in the stressed donors. The recipients also displayed increased anxiety-like behavior, reduced basal plasma corticosterone levels and differential gene expression in the brain. Furthermore, cecal microbiota transfer from a chronically stressed individual was sufficient to mimic the adverse impact of chronic stress on memory in recipient hosts and this action may be related to the Alistipes genus. Our results provide evidence of a feed-forward loop system linking the microbiota-gut-brain axis to stress and memory function and suggest that maintaining a healthy microbiota could help alleviate memory impairments linked to chronic stress.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Ansiedade/metabolismo , Corticosterona , Coturnix , Transtornos da Memória
7.
Front Endocrinol (Lausanne) ; 12: 742669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970219

RESUMO

Objective: Disturbances in the activity of the hypothalamus-pituitary-adrenal axis could lead to functional alterations in the brain of diabetes patients. In a later perspective of investigating the link between the activity of the hypothalamus-pituitary-adrenal axis and the developing brain in children with diabetes, we assessed here nocturnal cortisol metabolism in prepubertal children with type 1 diabetes mellitus (T1DM). Methods: Prepubertal patients (aged 6-12 years) diagnosed with T1DM at least 1 year previously were recruited, along with matched controls. Nocturnal urine samples were collected, with saliva samples taken at awakening and 30 minutes after awakening. All samples were collected at home over 5 consecutive days with no detectable nocturnal hypoglycaemia. The State-Trait Anxiety Inventory (trait scale only) and Child Depression Inventory were also completed. Glucocorticoid metabolites in the urine, salivary cortisol (sF) and cortisone (sE) were measured by liquid chromatography-tandem mass spectrometry. Metabolic data were analysed by logistic regression, adjusting for sex, age, BMI and trait anxiety score. Results: Urine glucocorticoid metabolites were significantly lower in T1DM patients compared to controls. 11ß-hydroxysteroid dehydrogenase type 1 activity was significantly higher, while 11ß-hydroxysteroid dehydrogenase type 2, 5(α+ß)-reductase and 5α-reductase levels were all lower, in T1DM patients compared to controls. There was a significant group difference in delta sE level but not in delta sF level between the time of awakening and 30 minutes thereafter. Conclusions: Our findings suggest that altered nocturnal cortisol metabolism and morning HPA axis hyperactivity in children with T1DM leads to greater cortisol bioavailability and lower cortisol production as a compensatory effect. This altered nocturnal glucocorticoid metabolism when cortisol production is physiologically reduced and this HPA axis hyperactivity question their impact on brain functioning.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Hidrocortisona/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Ansiedade/psicologia , Criança , Cortisona/metabolismo , Depressão/psicologia , Feminino , Glucocorticoides/urina , Humanos , Masculino , Proteínas de Membrana , Saliva/química , Saliva/metabolismo
8.
Cannabis Cannabinoid Res ; 6(6): 488-507, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34591647

RESUMO

Background: Neuroinflammation is a key feature shared by most, if not all, neuropathologies. It involves complex biological processes that act as a protective mechanism to fight against the injurious stimuli, but it can lead to tissue damage if self-perpetuating. In this context, microglia, the main cellular actor of neuroinflammation in the brain, are seen as a double-edged sword. By phagocyting neuronal debris, these cells can not only provide tissue repair but can also contribute to neuronal damage by releasing harmful substances, including inflammatory cytokines. The mechanisms guiding these apparent opposing actions are poorly known. The endocannabinoid system modulates the release of inflammatory factors such as cytokines and could represent a functional link between microglia and neuroinflammatory processes. According to transcriptomic databases and in vitro studies, microglia, the main source of cytokines in pathological conditions, express the cannabinoid type 1 receptor (CB1R). Methods: We thus developed a conditional mouse model of CB1R deletion specifically in microglia, which was subjected to an immune challenge (peripheral lipopolysaccharide injection). Results: Our results reveal that microglial CB1R differentially controls sickness behavior in males and females. Conclusion: These findings add to the comprehension of neuroinflammatory processes and might be of great interest for future studies aimed at developing therapeutic strategies for brain disorders with higher prevalence in men.


Assuntos
Canabinoides , Encefalite , Animais , Masculino , Camundongos , Microglia , Doenças Neuroinflamatórias , Receptores de Canabinoides/genética
9.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808655

RESUMO

Chronic stress is encountered in our everyday life and is thought to contribute to a number of diseases. Many of these stress-related disorders display a sex bias. Because glucocorticoid hormones are the main biological mediator of chronic stress, researchers have been interested in understanding the sexual dimorphism in glucocorticoid stress response to better explain the sex bias in stress-related diseases. Although not yet demonstrated for glucocorticoid regulation, sex chromosomes do influence sex-specific biology as soon as conception. Then a transient rise in testosterone start to shape the male brain during the prenatal period differently to the female brain. These organizational effects are completed just before puberty. The cerebral regions implicated in glucocorticoid regulation at rest and after stress are thereby impacted in a sex-specific manner. After puberty, the high levels of all gonadal hormones will interact with glucocorticoid hormones in specific crosstalk through their respective nuclear receptors. In addition, stress occurring early in life, in particular during the prenatal period and in adolescence will prime in the long-term glucocorticoid stress response through epigenetic mechanisms, again in a sex-specific manner. Altogether, various molecular mechanisms explain sex-specific glucocorticoid stress responses that do not exclude important gender effects in humans.


Assuntos
Glucocorticoides/metabolismo , Caracteres Sexuais , Estresse Fisiológico , Estresse Psicológico , Adolescente , Animais , Criança , Desenvolvimento Infantil , Desenvolvimento Embrionário/genética , Estudos de Associação Genética , Hormônios Gonadais/metabolismo , Humanos , Hidrocortisona/metabolismo , Puberdade/genética , Puberdade/metabolismo , Fatores Sexuais , Esteroides/metabolismo , Estresse Fisiológico/genética , Estresse Psicológico/genética
10.
Transl Psychiatry ; 11(1): 203, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824279

RESUMO

This study aimed at identifying molecular biomarkers of inflammation-related depression in order to improve diagnosis and treatment. For this, we performed whole-genome expression profiling from peripheral blood in a naturalistic model of inflammation-associated major depressive disorder (MDD) represented by comorbid depression in obese patients. We took advantage of the marked reduction of depressive symptoms and inflammation following bariatric surgery to test the robustness of the identified biomarkers. Depression was assessed during a clinical interview using Mini-International Neuropsychiatric Interview and the 10-item, clinician-administered, Montgomery-Asberg Depression Rating Scale. From a cohort of 100 massively obese patients, we selected 33 of them for transcriptomic analysis. Twenty-four of them were again analyzed 4-12 months after bariatric surgery. We conducted differential gene expression analyses before and after surgery in unmedicated MDD and non-depressed obese subjects. We found that TP53 (Tumor Protein 53), GR (Glucocorticoid Receptor), and NFκB (Nuclear Factor kappa B) pathways were the most discriminating pathways associated with inflammation-related MDD. These signaling pathways were processed in composite z-scores of gene expression that were used as biomarkers in regression analyses. Results showed that these transcriptomic biomarkers highly predicted depressive symptom intensity at baseline and their remission after bariatric surgery. While inflammation was present in all patients, GR signaling over-activation was found only in depressed ones where it may further increase inflammatory and apoptosis pathways. In conclusion, using an original model of inflammation-related depression and its remission without antidepressants, we provide molecular predictors of inflammation-related MDD and new insights in the molecular pathways involved.


Assuntos
Transtorno Depressivo Maior , Antidepressivos/uso terapêutico , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Transcriptoma
11.
Sci Rep ; 11(1): 5007, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658551

RESUMO

Elite horse athletes that live in individual boxes and train and compete for hours experience long-term physical and mental stress that compromises animal welfare and alters the gut microbiota. We therefore assessed if a temporary period out to pasture with conspecifics could improve animal welfare and in turn, favorably affect intestinal microbiota composition. A total of 27 athletes were monitored before and after a period of 1.5 months out to pasture, and their fecal microbiota and behavior profiles were compared to those of 18 horses kept in individual boxes. The overall diversity and microbiota composition of pasture and control individuals were temporally similar, suggesting resilience to environmental challenges. However, pasture exposure induced an increase in Ruminococcus and Coprococcus that lasted 1-month after the return to individual boxes, which may have promoted beneficial effects on health and welfare. Associations between the gut microbiota composition and behavior indicating poor welfare were established. Furthermore, withdrawn behavior was associated with the relative abundances of Lachnospiraceae AC2044 group and Clostridiales family XIII. Both accommodate a large part of butyrate-producing bacterial genera. While we cannot infer causality within this study, arguably, these findings suggest that management practices maintained over a longer period of time may moderate the behavior link to the gut ecosystem beyond its resilience potential.


Assuntos
Adaptação Fisiológica , Bem-Estar do Animal/ética , Comportamento Competitivo/fisiologia , Microbioma Gastrointestinal/genética , Cavalos/microbiologia , Cavalos/psicologia , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biodiversidade , Butiratos/metabolismo , Clostridiales/classificação , Clostridiales/genética , Clostridiales/isolamento & purificação , Fezes/microbiologia , Feminino , Fibrobacteres/classificação , Fibrobacteres/genética , Fibrobacteres/isolamento & purificação , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Cavalos/fisiologia , Masculino , RNA Ribossômico 16S/genética , Spirochaetales/classificação , Spirochaetales/genética , Spirochaetales/isolamento & purificação , Esportes , Estresse Fisiológico
12.
Curr Protoc ; 1(2): e33, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33566459

RESUMO

All neuronal cells hold the same genetic information but vary by their structural and functional plasticity depending on the brain area and environmental influences. Such variability involves specific gene regulation, which is driven by transcription factors (TFs). In the field of neuroscience, epigenetics is the main mechanism that has been investigated to understand the dynamic modulation of gene expression by behavioral responses, stress responses, memory processes, etc. Nowadays, gene expression analyzed by real-time quantitative PCR and TF binding estimated by chromatin immunoprecipitation (ChIP) enables one to dissect this regulation. Because of the wide range of transgenic models, as well as cost-effective aspects, mouse models are widely used neuroscience. Thus, we have set up a protocol that allows extraction of both RNA for gene expression analysis and chromatin for ChIP experiment from a single mouse hippocampus. Using such protocols, information regarding gene expression and regulatory molecular mechanisms from the same animal can be integrated and correlated with neurobiological and behavioral outcomes. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Hippocampus isolation from mouse brain Basic Protocol 2: RNA extraction and gene expression analysis from a mouse half hippocampus Basic Protocol 3: ChIP from one hemisphere side mouse hippocampus.


Assuntos
Cromatina , Epigênese Genética , Animais , Cromatina/genética , Imunoprecipitação da Cromatina , Expressão Gênica , Hipocampo , Camundongos
13.
Int J Obes (Lond) ; 45(3): 588-598, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33223517

RESUMO

BACKGROUND: Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function. METHODS: Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.e. covering periadolescent period. RESULTS: As expected, VAS was effective in enhancing peripheral vitamin A levels as well as hippocampal retinoic acid levels, the active metabolite of vitamin A, regardless of the diet. VAS attenuated HFSD-induced excessive weight gain, without affecting metabolic changes, and prevented alterations of gut microbiota α-diversity. In HFSD-fed mice, VAS prevented recognition memory deficits but had no effect on aversive memory enhancement. Interestingly, VAS alleviated both HFSD-induced higher neuronal activation and lower glucocorticoid receptor phosphorylation in the hippocampus after training. CONCLUSION: Dietary VAS was protective against the deleterious effects of early obesogenic diet consumption on hippocampal function, possibly through modulation of the gut-brain axis.


Assuntos
Cognição/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Vitamina A , Animais , Eixo Encéfalo-Intestino/efeitos dos fármacos , Hipocampo/química , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Vitamina A/administração & dosagem , Vitamina A/farmacologia
14.
Proc Natl Acad Sci U S A ; 117(47): 29904-29913, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33172990

RESUMO

Food is a powerful entrainment cue for circadian clocks in peripheral tissues, and changes in the composition of nutrients have been demonstrated to metabolically reprogram peripheral clocks. However, how food challenges may influence circadian metabolism of the master clock in the suprachiasmatic nucleus (SCN) or in other brain areas is poorly understood. Using high-throughput metabolomics, we studied the circadian metabolome profiles of the SCN and medial prefrontal cortex (mPFC) in lean mice compared with mice challenged with a high-fat diet (HFD). Both the mPFC and the SCN displayed a robust cyclic metabolism, with a strikingly high sensitivity to HFD perturbation in an area-specific manner. The phase and amplitude of oscillations were drastically different between the SCN and mPFC, and the metabolic pathways impacted by HFD were remarkably region-dependent. Furthermore, HFD induced a significant increase in the number of cycling metabolites exclusively in the SCN, revealing an unsuspected susceptibility of the master clock to food stress.


Assuntos
Relógios Circadianos/fisiologia , Dieta Hiperlipídica/efeitos adversos , Metaboloma/fisiologia , Córtex Pré-Frontal/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Masculino , Metabolômica , Camundongos , Modelos Animais , Fotoperíodo
15.
Sci Rep ; 10(1): 20702, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244117

RESUMO

Chicks subjected to early stressful factors could develop long-lasting effects on their performances, welfare and health. Free access to essential oils (EO) in poultry farming could mitigate these effects and potentially reduce use of antimicrobial drugs. This study on chicken analyzed long-lasting effects of post-hatch adverse conditions (Delayed group), and the impact of EO intake on blood physiological parameters and transcriptome. Half of the Control and Delayed groups had free access to EO, while the other half had only water for the first 13 days post-hatching. Blood analyses of metabolites, inflammation and oxidative stress biomarkers, and mRNA expression showed sex differences. Long-lasting effects of postnatal experience and EO intake persisted in blood transcriptome at D34. The early adverse conditions modified 68 genes in males and 83 genes in females. In Delayed males six transcription factors were over-represented (NFE2L2, MEF2A, FOXI1, Foxd3, Sox2 and TEAD1). In females only one factor was over-represented (PLAG1) and four under-represented (NFIL3, Foxd3, ESR2 and TAL1::TCF3). The genes showing modified expression are involved in oxidative stress, growth, bone metabolism and reproduction. Remarkably, spontaneous EO intake restored the expression levels of some genes affected by the postnatal adverse conditions suggesting a mitigating effect of EO intake.


Assuntos
Sangue/efeitos dos fármacos , Galinhas/genética , Óleos Voláteis/administração & dosagem , Transcriptoma/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Galinhas/metabolismo , Feminino , Inflamação/genética , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , RNA Mensageiro/genética , Transcriptoma/genética
16.
Sci Rep ; 10(1): 15880, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968096

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Sci Rep ; 10(1): 8311, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433513

RESUMO

We simultaneously measured the fecal microbiota and multiple environmental and host-related variables in a cohort of 185 healthy horses reared in similar conditions during a period of eight months. The pattern of rare bacteria varied from host to host and was largely different between two time points. Among a suite of variables examined, equitation factors were highly associated with the gut microbiota variability, evoking a relationship between gut microbiota and high levels of physical and mental stressors. Behavioral indicators that pointed toward a compromised welfare state (e.g. stereotypies, hypervigilance and aggressiveness) were also associated with the gut microbiota, reinforcing the notion for the existence of the microbiota-gut-brain axis. These observations were consistent with the microbiability of behaviour traits (> 15%), illustrating the importance of gut microbial composition to animal behaviour. As more elite athletes suffer from stress, targeting the microbiota offers a new opportunity to investigate the bidirectional interactions within the brain gut microbiota axis.


Assuntos
Comportamento Animal , Microbioma Gastrointestinal/fisiologia , Cavalos/microbiologia , Animais , Biodiversidade , Estudos de Coortes , Meio Ambiente , Fezes/microbiologia , Feminino , Nível de Saúde , Cavalos/fisiologia , Masculino , Fenótipo , Condicionamento Físico Animal , Esportes
18.
Animals (Basel) ; 9(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466327

RESUMO

Horses are mainly housed in individual boxes. This housing system is reported to be highly detrimental with regard to welfare and could trigger the expression of four behavioural indicators of a compromised welfare state: stereotypies, aggressiveness toward humans, unresponsiveness to the environment, and stress-related behaviours. The aim of this study was to identify housing and management factors that could alleviate the detrimental effects of individual boxes on welfare. A total of 187 horses were observed over 50 days by scan sampling. The impact of 12 factors was investigated on the expression of the four behavioural indicators in three different analyses. The results show that the majority of factors tested did not influence the expression of the behavioural indicators. Only three (straw bedding, a window opening onto the external environment, and a reduced quantity of concentrated feed) would have beneficial, although limited, effects. Furthermore, the longer the horses spent in individual boxes, the more likely they were to express unresponsiveness to the environment. To preserve the welfare of horses, it seems necessary to allow free exercise, interactions with conspecifics, and fibre consumption as often as possible, to ensure the satisfaction of the species' behavioural and physiological needs.

19.
Sci Rep ; 9(1): 9620, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270376

RESUMO

An integrated analysis of gut microbiota, blood biochemical and metabolome in 52 endurance horses was performed. Clustering by gut microbiota revealed the existence of two communities mainly driven by diet as host properties showed little effect. Community 1 presented lower richness and diversity, but higher dominance and rarity of species, including some pathobionts. Moreover, its microbiota composition was tightly linked to host blood metabolites related to lipid metabolism and glycolysis at basal time. Despite the lower fiber intake, community type 1 appeared more specialized to produce acetate as a mean of maintaining the energy supply as glucose concentrations fell during the race. On the other hand, community type 2 showed an enrichment of fibrolytic and cellulolytic bacteria as well as anaerobic fungi, coupled to a higher production of propionate and butyrate. The higher butyrate proportion in community 2 was not associated with protective effects on telomere lengths but could have ameliorated mucosal inflammation and oxidative status. The gut microbiota was neither associated with the blood biochemical markers nor metabolome during the endurance race, and did not provide a biomarker for race ranking or risk of failure to finish the race.

20.
Psychopharmacology (Berl) ; 236(5): 1583-1596, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31147734

RESUMO

RATIONALE: Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS). OBJECTIVES: The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS. METHODS: Male Wistar rats were exposed to MS (3 h per day from post-natal day (PND)2 to PND14) or left undisturbed and received daily intraperitoneal injection of a MLCK inhibitor (ML-7, 5 mg/kg) or vehicle during the same period. At adulthood, emotional behaviors, corticosterone response to stress, and gut microbiota composition were analyzed. RESULTS: ML-7 restored gut barrier function in MS rats specifically during the neonatal period. Remarkably, ML-7 prevented MS-induced sexual reward-seeking impairment and reversed the alteration of corticosterone response to stress at adulthood. The effects of ML-7 were accompanied by the normalization of the abundance of members of Lachnospiraceae, Clostridiales, Desulfovibrio, Bacteroidales, Enterorhabdus, and Bifidobacterium in the feces of MS rats at adulthood. CONCLUSIONS: Altogether, our work suggests that improvement of intestinal barrier defects during development may alleviate some of the long-term effects of early-life stress and provides new insight on brain-gut axis communication in a context of stress.


Assuntos
Azepinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Privação Materna , Naftalenos/farmacologia , Estresse Psicológico/metabolismo , Animais , Animais Recém-Nascidos , Azepinas/uso terapêutico , Corticosterona/metabolismo , Relação Dose-Resposta a Droga , Feminino , Microbioma Gastrointestinal/fisiologia , Masculino , Quinase de Cadeia Leve de Miosina/farmacologia , Quinase de Cadeia Leve de Miosina/uso terapêutico , Naftalenos/uso terapêutico , Gravidez , Ratos , Ratos Wistar , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA