Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773330

RESUMO

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.

2.
RSC Med Chem ; 15(3): 1066-1071, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516600

RESUMO

We have developed a novel chemical handle (PFI-E3H1) and a chemical probe (PFI-7) as ligands for the Gid4 subunit of the human E3 ligase CTLH degradation complex. Through an efficient initial hit-ID campaign, structure-based drug design (SBDD) and leveraging the sizeable Pfizer compound library, we identified a 500 nM ligand for this E3 ligase through file screening alone. Further exploration identified a vector that is tolerant to addition of a linker for future chimeric molecule design. The chemotype was subsequently optimized to sub-100 nM Gid4 binding affinity for a chemical probe. These novel tools, alongside the suitable negative control also identified, should enable the interrogation of this complex human E3 ligase macromolecular assembly.

3.
J Chem Inf Model ; 62(9): 2239-2247, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34865473

RESUMO

By analyzing data sets of replicate DNA-Encoded Library (DEL) selections, an approach for estimating the noise level of the experiment has been developed. Using a logarithm transformation of the number of counts associated with each compound and a subset of compounds with the highest number of counts, it is possible to assess the quality of the data through normalizing the replicates and use this same data to estimate the noise in the experiment. The noise level is seen to be dependent on sequencing depth as well as specific selection conditions. The noise estimation is independent of any cutoff used to remove low frequency compounds from the data analysis. The removal of compounds with only 1-5 read counts greatly reduces some of the challenges encountered in DEL data analysis as it can reduce the data set by greater than 100-fold without impacting the interpretation of the results.


Assuntos
DNA , Bibliotecas de Moléculas Pequenas , Análise de Dados , Incerteza
4.
Bioorg Med Chem ; 41: 116205, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000509

RESUMO

The ability to predict chemical structure from DNA sequence has to date been a necessary cornerstone of DNA-encoded library technology. DNA-encoded libraries (DELs) are typically screened by immobilized affinity selection and enriched library members are identified by counting the number of times an individual compound's sequence is observed in the resultant dataset. Those with high signal reads (DEL hits) are subsequently followed up through off-DNA synthesis of the predicted small molecule structures. However, hits followed-up in this manner often fail to translate to confirmed ligands. To address this low conversion rate of DEL hits to off-DNA ligands, we have developed an approach that eliminates the reliance on chemical structure prediction from DNA sequence. Here we describe our method of combining non-combinatorial resynthesis on-DNA following library procedures as a rapid means to assess the probable molecules attached to the DNA barcode. Furthermore, we apply our Bead-Assisted Ligand Isolation Mass Spectrometry (BALI-MS) technique to identify the true binders found within the mixtures of on-DNA synthesis products. Finally, we describe a Normalized Enrichment (NE) metric that allows for the quantitative assessment of affinity selection in these studies. We exemplify how this combined approach enables the identification of putative hit matter against a clinically relevant therapeutic target bisphosphoglycerate mutase, BPGM.


Assuntos
DNA/química , Descoberta de Drogas , Biblioteca Gênica , Espectrometria de Massas/métodos , Técnicas de Química Combinatória , Ligantes , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
5.
SLAS Discov ; 26(2): 263-280, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33412987

RESUMO

Over the past 20 years, the toolbox for discovering small-molecule therapeutic starting points has expanded considerably. Pharmaceutical researchers can now choose from technologies that, in addition to traditional high-throughput knowledge-based and diversity screening, now include the screening of fragment and fragment-like libraries, affinity selection mass spectrometry, and selection against DNA-encoded libraries (DELs). Each of these techniques has its own unique combination of advantages and limitations that makes them more, or less, suitable for different target classes or discovery objectives, such as desired mechanism of action. Layered on top of this are the constraints of the drug-hunters themselves, including budgets, timelines, and available platform capacity; each of these can play a part in dictating the hit identification strategy for a discovery program. In this article, we discuss some of the factors that we use to govern our building of a hit identification roadmap for a program and describe the increasing role that DELs are playing in our discovery strategy. Furthermore, we share our learning during our initial exploration of DEL and highlight the approaches we have evolved to maximize the value returned from DEL selections. Topics addressed include the optimization of library design and production, reagent validation, data analysis, and hit confirmation. We describe how our thinking in these areas has led us to build a DEL platform that has begun to deliver tractable matter to our global discovery portfolio.


Assuntos
Descoberta de Drogas/métodos , Biblioteca Gênica , Bibliotecas de Moléculas Pequenas , Descoberta de Drogas/normas , Humanos
6.
Nat Chem Biol ; 17(2): 152-160, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199914

RESUMO

Heterobifunctional chimeric degraders are a class of ligands that recruit target proteins to E3 ubiquitin ligases to drive compound-dependent protein degradation. Advancing from initial chemical tools, protein degraders represent a mechanism of growing interest in drug discovery. Critical to the mechanism of action is the formation of a ternary complex between the target, degrader and E3 ligase to promote ubiquitination and subsequent degradation. However, limited insights into ternary complex structures exist, including a near absence of studies on one of the most widely co-opted E3s, cellular inhibitor of apoptosis 1 (cIAP1). In this work, we use a combination of biochemical, biophysical and structural studies to characterize degrader-mediated ternary complexes of Bruton's tyrosine kinase and cIAP1. Our results reveal new insights from unique ternary complex structures and show that increased ternary complex stability or rigidity need not always correlate with increased degradation efficiency.


Assuntos
Tirosina Quinase da Agamaglobulinemia/genética , Proteínas Inibidoras de Apoptose/genética , Cromatografia em Gel , Reagentes de Ligações Cruzadas , Humanos , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteólise , Espectrometria de Massas por Ionização por Electrospray , Ubiquitina-Proteína Ligases , Ubiquitinação , Difração de Raios X
7.
ACS Comb Sci ; 21(10): 650-655, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31425646

RESUMO

DNA-encoded chemical library (DECL) synthesis must occur in aqueous media under conditions that preserve the integrity of the DNA encoding tag. While the identification of "DNA-compatible" reaction conditions is critical for the development of DECL designs that explore previously inaccessible chemical space, reports measuring such compatibility have been largely restricted to methods that do not faithfully capture the impact of reaction conditions on DNA fidelity in solution phase. Here we report a comprehensive methodology that uses soluble DNA substrates that exactly recapitulate DNA's exposure to the chemically reactive species of DECL synthesis. This approach includes the assessment of chemical fidelity (reaction yield and purity), encoding fidelity (ligation efficiency), and readability (DNA compatibility), revealing the fate of the DNA tag during DECL chemistry from a single platform.


Assuntos
DNA/química , Bibliotecas de Moléculas Pequenas/síntese química , Técnicas de Química Combinatória , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Soluções
8.
J Med Chem ; 61(7): 3008-3026, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29498843

RESUMO

Monoacylglycerol lipase (MAGL) inhibition provides a potential treatment approach to neuroinflammation through modulation of both the endocannabinoid pathway and arachidonoyl signaling in the central nervous system (CNS). Herein we report the discovery of compound 15 (PF-06795071), a potent and selective covalent MAGL inhibitor, featuring a novel trifluoromethyl glycol leaving group that confers significant physicochemical property improvements as compared with earlier inhibitor series with more lipophilic leaving groups. The design strategy focused on identifying an optimized leaving group that delivers MAGL potency, serine hydrolase selectivity, and CNS exposure while simultaneously reducing log  D, improving solubility, and minimizing chemical lability. Compound 15 achieves excellent CNS exposure, extended 2-AG elevation effect in vivo, and decreased brain inflammatory markers in response to an inflammatory challenge.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Carbamatos/síntese química , Carbamatos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Neurite (Inflamação)/tratamento farmacológico , Amidoidrolases/antagonistas & inibidores , Animais , Ácidos Araquidônicos/metabolismo , Biomarcadores , Química Encefálica/efeitos dos fármacos , Cães , Desenho de Fármacos , Descoberta de Drogas , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Humanos , Macaca mulatta , Modelos Moleculares , Ratos , Ratos Wistar , Relação Estrutura-Atividade
9.
J Med Chem ; 59(3): 1165-75, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26734723

RESUMO

Inhibition of the sodium-coupled citrate transporter (NaCT or SLC13A5) has been proposed as a new therapeutic approach for prevention and treatment of metabolic diseases. In a previous report, we discovered dicarboxylate 1a (PF-06649298) which inhibits the transport of citrate in in vitro and in vivo settings via a specific interaction with NaCT. Herein, we report the optimization of this series leading to 4a (PF-06761281), a more potent inhibitor with suitable in vivo pharmacokinetic profile for assessment of in vivo pharmacodynamics. Compound 4a was used to demonstrate dose-dependent inhibition of radioactive [(14)C]citrate uptake in liver and kidney in vivo, resulting in modest reductions in plasma glucose concentrations.


Assuntos
Citratos/metabolismo , Malatos/química , Malatos/farmacologia , Fenilbutiratos/química , Fenilbutiratos/farmacologia , Piridinas/química , Piridinas/farmacologia , Simportadores/antagonistas & inibidores , Animais , Transporte Biológico/efeitos dos fármacos , Glicemia/metabolismo , Citratos/farmacocinética , Relação Dose-Resposta a Droga , Células HEK293 , Hepatócitos/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malatos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Estrutura Molecular , Fenilbutiratos/administração & dosagem , Piridinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Simportadores/metabolismo
10.
J Antibiot (Tokyo) ; 68(6): 361-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25464974

RESUMO

A high-throughput phenotypic screen for novel antibacterial agents led to the discovery of a novel pyrazolopyrimidinedione, PPD-1, with preferential activity against methicillin-resistant Staphylococcus aureus (MRSA). Resistance mapping revealed the likely target of inhibition to be lysyl tRNA synthetase (LysRS). Preliminary structure-activity relationship (SAR) studies led to an analog, PPD-2, which gained Gram-negative antibacterial activity at the expense of MRSA activity and resistance to this compound mapped to prolyl tRNA synthetase (ProRS). These targets of inhibition were confirmed in vitro, with PPD-1 showing IC50s of 21.7 and 35 µM in purified LysRS and ProRS enzyme assays, and PPD-2, 151 and 0.04 µM, respectively. The highly attractive chemical properties of these compounds combined with intriguing preliminary SAR suggest that further exploration of this compelling novel series is warranted.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Descoberta de Drogas , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ensaios de Triagem em Larga Escala , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pirazóis/síntese química , Pirazóis/química , Pirimidinonas/síntese química , Pirimidinonas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Aminoacilação de RNA de Transferência/efeitos dos fármacos
11.
mBio ; 5(5): e01551-14, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25271285

RESUMO

UNLABELLED: The problem of multidrug resistance in serious Gram-negative bacterial pathogens has escalated so severely that new cellular targets and pathways need to be exploited to avoid many of the preexisting antibiotic resistance mechanisms that are rapidly disseminating to new strains. The discovery of small-molecule inhibitors of LpxC, the enzyme responsible for the first committed step in the biosynthesis of lipid A, represents a clinically unprecedented strategy to specifically act against Gram-negative organisms such as Pseudomonas aeruginosa and members of the Enterobacteriaceae. In this report, we describe the microbiological characterization of LpxC-4, a recently disclosed inhibitor of this bacterial target, and demonstrate that its spectrum of activity extends to several of the pathogenic species that are most threatening to human health today. We also show that spontaneous generation of LpxC-4 resistance occurs at frequencies comparable to those seen with marketed antibiotics, and we provide an in-depth analysis of the mechanisms of resistance utilized by target pathogens. Interestingly, these isolates also served as tools to further our understanding of the regulation of lipid A biosynthesis and enabled the discovery that this process occurs very distinctly between P. aeruginosa and members of the Enterobacteriaceae. Finally, we demonstrate that LpxC-4 is efficacious in vivo against multiple strains in different models of bacterial infection and that the major first-step resistance mechanisms employed by the intended target organisms can still be effectively treated with this new inhibitor. IMPORTANCE: New antibiotics are needed for the effective treatment of serious infections caused by Gram-negative pathogens, and the responsibility of identifying new drug candidates rests squarely on the shoulders of the infectious disease community. The limited number of validated cellular targets and approaches, along with the increasing amount of antibiotic resistance that is spreading throughout the clinical environment, has prompted us to explore the utility of inhibitors of novel targets and pathways in these resistant organisms, since preexisting target-based resistance should be negligible. Lipid A biosynthesis is an essential process for the formation of lipopolysaccharide, which is a critical component of the Gram-negative outer membrane. In this report, we describe the in vitro and in vivo characterization of novel inhibitors of LpxC, an enzyme whose activity is required for proper lipid A biosynthesis, and demonstrate that our lead compound has the requisite attributes to warrant further consideration as a novel antibiotic.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Lipídeo A/biossíntese , Pseudomonas aeruginosa/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Deleção de Genes , Concentração Inibidora 50 , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Testes de Sensibilidade Microbiana , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Regulação para Cima
12.
mBio ; 3(5)2012.
Artigo em Inglês | MEDLINE | ID: mdl-23033474

RESUMO

UNLABELLED: New treatments are needed for extensively drug-resistant (XDR) Gram-negative bacilli (GNB), such as Acinetobacter baumannii. Toll-like receptor 4 (TLR4) was previously reported to enhance bacterial clearance of GNB, including A. baumannii. However, here we have shown that 100% of wild-type mice versus 0% of TLR4-deficient mice died of septic shock due to A. baumannii infection, despite having similar tissue bacterial burdens. The strain lipopolysaccharide (LPS) content and TLR4 activation by extracted LPS did not correlate with in vivo virulence, nor did colistin resistance due to LPS phosphoethanolamine modification. However, more-virulent strains shed more LPS during growth than less-virulent strains, resulting in enhanced TLR4 activation. Due to the role of LPS in A. baumannii virulence, an LpxC inhibitor (which affects lipid A biosynthesis) antibiotic was tested. The LpxC inhibitor did not inhibit growth of the bacterium (MIC>512 µg/ml) but suppressed A. baumannii LPS-mediated activation of TLR4. Treatment of infected mice with the LpxC inhibitor enhanced clearance of the bacteria by enhancing opsonophagocytic killing, reduced serum LPS concentrations and inflammation, and completely protected the mice from lethal infection. These results identify a previously unappreciated potential for the new class of LpxC inhibitor antibiotics to treat XDR A. baumannii infections. Furthermore, they have far-reaching implications for pathogenesis and treatment of infections caused by GNB and for the discovery of novel antibiotics not detected by standard in vitro screens. IMPORTANCE: Novel treatments are needed for infections caused by Acinetobacter baumannii, a Gram-negative bacterium that is extremely antibiotic resistant. The current study was undertaken to understand the immunopathogenesis of these infections, as a basis for defining novel treatments. The primary strain characteristic that differentiated virulent from less-virulent strains was shedding of Gram-negative lipopolysaccharide (LPS) during growth. A novel class of antibiotics, called LpxC inhibitors, block LPS synthesis, but these drugs do not demonstrate the ability to kill A. baumannii in vitro. We found that an LpxC inhibitor blocked the ability of bacteria to activate the sepsis cascade, enhanced opsonophagocytic killing of the bacteria, and protected mice from lethal infection. Thus, an entire new class of antibiotics which is already in development has heretofore-unrecognized potential to treat A. baumannii infections. Furthermore, standard antibiotic screens based on in vitro killing failed to detect this treatment potential of LpxC inhibitors for A. baumannii infections.


Assuntos
Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/patogenicidade , Amidoidrolases/antagonistas & inibidores , Fagocitose , Infecções por Acinetobacter/mortalidade , Acinetobacter baumannii/enzimologia , Animais , Inflamação/imunologia , Inflamação/patologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Sepse/imunologia , Sepse/mortalidade , Sepse/patologia , Análise de Sobrevida , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/metabolismo , Virulência
13.
Bioorg Med Chem Lett ; 22(22): 6832-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23046961

RESUMO

The synthesis and antibacterial activity of heterocyclic methylsulfone hydroxamates is presented. Compounds in this series are potent inhibitors of the LpxC enzyme, a key enzyme involved in the production of lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria. SAR evaluation of compounds in this series revealed analogs with potent antibacterial activity against challenging Gram-negative species such as Pseudomonas aeruginosa and Klebsiella pneumoniae.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/química , Inibidores Enzimáticos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Ácidos Hidroxâmicos/química , Amidoidrolases/metabolismo , Antibacterianos/síntese química , Antibacterianos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/química , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Relação Estrutura-Atividade , Sulfonas/química
14.
J Med Chem ; 55(4): 1662-70, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22257165
15.
J Med Chem ; 55(2): 914-23, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22175825
16.
Org Lett ; 13(19): 5338-41, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21910461

RESUMO

An efficient method was developed for the synthesis of 2-methylene-4-substituted ethyl butyrates via cyclopropyl opening followed by a Wittig reaction. The desired products were formed in a two-step, one-pot reaction sequence. Alternatively, the key intermediate ylide 2 was isolable and could be stored under oxygen-free conditions and subsequently utilized. A variety of nucleophiles were found to open the commercially available cyclopropane 1. The resulting ylide reacted with aldehydes to provide E-olefinic products.


Assuntos
Boratos/química , Compostos Organofosforados/química , Aldeídos/química , Ciclização , Estrutura Molecular
18.
J Am Chem Soc ; 128(35): 11620-30, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16939287

RESUMO

The tandem [4+2]/[3+2] cycloaddition of nitroalkenes has been employed in the synthesis of 1-azafenestranes, molecules of theoretical interest because of planarizing distortion of their central carbon atoms. The synthesis of c,c,c,c-[5.5.5.5]-1-azafenestrane was completed in good yield from a substituted nitrocyclopentene, and its borane adduct was analyzed through X-ray crystallography, which showed a moderate distortion from ideal tetrahedral geometry. The syntheses of two members of the [4.5.5.5] family of 1-azafenestranes are also reported, including one with a trans fusion at a bicyclic ring junction which brings about considerable planarization of one of the central angles (16.8 degrees deviation from tetrahedral geometry). While investigating the [4.5.5.5]-1-azafenestranes, a novel dyotropic rearrangement that converts nitroso acetals into tetracyclic aminals was discovered. Through conformational analysis, a means to prevent this molecular reorganization was formulated and realized experimentally with the use of a bulky vinyl ether in the key [4+2] cycloaddition reaction. Finally, DFT calculations on relative strain energy for the 1-azafenestranes, as well as their predicted central angles, are disclosed.


Assuntos
Compostos Aza/síntese química , Compostos Bicíclicos com Pontes/síntese química , Ciclopropanos/química , Compostos Policíclicos/química , Compostos Aza/química , Compostos Bicíclicos com Pontes/química , Cristalografia por Raios X , Ciclização , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
19.
J Org Chem ; 71(16): 6211-20, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16872207

RESUMO

A general synthesis of a new type of heterodiene, the N-vinyl nitrone, is described. The synthetic sequence begins with the conjugate addition of benzeneselenol to nitroalkenes (in turn derived from Henry reaction of an aldehyde and a nitroalkane) to provide 2-selenenylnitroalkenes. These selenonitroalkanes are reduced to the corresponding hydroxylamines which are combined with aldehydes to form nitrones. The phenylselenenyl-containing nitrones are then oxidized to selenoxides which undergo syn-selenoxide elimination to provide N-vinyl nitrones. Three X-ray crystal structures of substituted N-vinyl nitrones were obtained. In addition, the first [4+2] cycloaddition of an N-vinyl nitrone is reported.


Assuntos
Óxidos de Nitrogênio/química , Alcenos/química , Derivados de Benzeno/química , Cristalografia por Raios X , Elétrons , Modelos Moleculares , Estrutura Molecular , Nitrogênio/química , Óxidos de Nitrogênio/síntese química , Compostos Organosselênicos/química , Oxigênio/química , Selênio/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA