Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 79(7): 1657-1667, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775752

RESUMO

OBJECTIVES: To characterize the genetic basis of azithromycin resistance in Escherichia coli and Salmonella collected within the EU harmonized antimicrobial resistance (AMR) surveillance programme in 2014-18 and the Danish AMR surveillance programme in 2016-19. METHODS: WGS data of 1007 E. coli [165 azithromycin resistant (MIC > 16 mg/L)] and 269 Salmonella [29 azithromycin resistant (MIC > 16 mg/L)] were screened for acquired macrolide resistance genes and mutations in rplDV, 23S rRNA and acrB genes using ResFinder v4.0, AMRFinder Plus and custom scripts. Genotype-phenotype concordance was determined for all isolates. Transferability of mef(C)-mph(G)-carrying plasmids was assessed by conjugation experiments. RESULTS: mph(A), mph(B), mef(B), erm(B) and mef(C)-mph(G) were detected in E. coli and Salmonella, whereas erm(C), erm(42), ere(A) and mph(E)-msr(E) were detected in E. coli only. The presence of macrolide resistance genes, alone or in combination, was concordant with the azithromycin-resistant phenotype in 69% of isolates. Distinct mph(A) operon structures were observed in azithromycin-susceptible (n = 50) and -resistant (n = 136) isolates. mef(C)-mph(G) were detected in porcine and bovine E. coli and in porcine Salmonella enterica serovar Derby and Salmonella enterica 1,4, [5],12:i:-, flanked downstream by ISCR2 or TnAs1 and associated with IncIγ and IncFII plasmids. CONCLUSIONS: Diverse azithromycin resistance genes were detected in E. coli and Salmonella from food-producing animals and meat in Europe. Azithromycin resistance genes mef(C)-mph(G) and erm(42) appear to be emerging primarily in porcine E. coli isolates. The identification of distinct mph(A) operon structures in susceptible and resistant isolates increases the predictive power of WGS-based methods for in silico detection of azithromycin resistance in Enterobacterales.


Assuntos
Antibacterianos , Azitromicina , Farmacorresistência Bacteriana , Escherichia coli , Carne , Testes de Sensibilidade Microbiana , Salmonella , Animais , Azitromicina/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Salmonella/efeitos dos fármacos , Salmonella/genética , Salmonella/isolamento & purificação , Farmacorresistência Bacteriana/genética , Europa (Continente) , Carne/microbiologia , Plasmídeos/genética , Sequenciamento Completo do Genoma , Genótipo , Infecções por Escherichia coli/microbiologia , Suínos , Macrolídeos/farmacologia , Monitoramento Epidemiológico , Genes Bacterianos
2.
Microb Genom ; 9(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526643

RESUMO

The global surveillance and outbreak investigation of antimicrobial resistance (AMR) is amidst a paradigm shift from traditional biology to bioinformatics. This is due to developments in whole-genome-sequencing (WGS) technologies, bioinformatics tools, and reduced costs. The increased use of WGS is accompanied by challenges such as standardization, quality control (QC), and data sharing. Thus, there is global need for inter-laboratory WGS proficiency test (PT) schemes to evaluate laboratories' capacity to produce reliable genomic data. Here, we present the results of the first iteration of the Genomic PT (GPT) organized by the Global Capacity Building Group at the Technical University of Denmark in 2020. Participating laboratories sequenced two isolates and corresponding DNA of Salmonella enterica, Escherichia coli and Campylobacter coli, using WGS methodologies routinely employed at their laboratories. The participants' ability to obtain consistently good-quality WGS data was assessed based on several QC WGS metrics. A total of 21 laboratories from 21 European countries submitted WGS and meta-data. Most delivered high-quality sequence data with only two laboratories identified as overall underperforming. The QC metrics, N50 and number of contigs, were identified as good indicators for high-sequencing quality. We propose QC thresholds for N50 greater than 20 000 and 25 000 for Campylobacter coli and Escherichia coli, respectively, and number of contigs >200 bp greater than 225, 265 and 100 for Salmonella enterica, Escherichia coli and Campylobacter coli, respectively. The GPT2020 results confirm the importance of systematic QC procedures, ensuring the submission of reliable WGS data for surveillance and outbreak investigation to meet the requirements of the paradigm shift in methodology.


Assuntos
Antibacterianos , Salmonella enterica , Humanos , Antibacterianos/farmacologia , União Europeia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Genômica , Salmonella enterica/genética
3.
Euro Surveill ; 28(20)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37199989

RESUMO

BackgroundIn Denmark, antimicrobial resistance (AMR) in pigs has been monitored since 1995 by phenotypic approaches using the same indicator bacteria. Emerging methodologies, such as metagenomics, may allow novel surveillance ways.AimThis study aimed to assess the relevance of indicator bacteria (Escherichia coli and Enterococcus faecalis) for AMR surveillance in pigs, and the utility of metagenomics.MethodsWe collated existing data on AMR and antimicrobial use (AMU) from the Danish surveillance programme and performed metagenomics sequencing on caecal samples that had been collected/stored through the programme during 1999-2004 and 2015-2018. We compared phenotypic and metagenomics results regarding AMR, and the correlation of both with AMU.ResultsVia the relative abundance of AMR genes, metagenomics allowed to rank these genes as well as the AMRs they contributed to, by their level of occurrence. Across the two study periods, resistance to aminoglycosides, macrolides, tetracycline, and beta-lactams appeared prominent, while resistance to fosfomycin and quinolones appeared low. In 2015-2018 sulfonamide resistance shifted from a low occurrence category to an intermediate one. Resistance to glycopeptides consistently decreased during the entire study period. Outcomes of both phenotypic and metagenomics approaches appeared to positively correlate with AMU. Metagenomics further allowed to identify multiple time-lagged correlations between AMU and AMR, the most evident being that increased macrolide use in sow/piglets or fatteners led to increased macrolide resistance with a lag of 3-6 months.ConclusionWe validated the long-term usefulness of indicator bacteria and showed that metagenomics is a promising approach for AMR surveillance.


Assuntos
Antibacterianos , Anti-Infecciosos , Suínos , Animais , Feminino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Metagenômica , Macrolídeos , Bactérias/genética , Escherichia coli/genética , Inibidores da Síntese de Proteínas , Dinamarca
5.
Microbiome ; 9(1): 148, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183060

RESUMO

BACKGROUND: Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) exhibit changes in their gut microbiota and are experiencing a range of complications, including acute graft-versus-host disease (aGvHD). It is unknown if, when, and under which conditions a re-establishment of microbial and immunological homeostasis occurs. It is also unclear whether microbiota long-term dynamics occur at other body sites than the gut such as the mouth or nose. Moreover, it is not known whether the patients' microbiota prior to HSCT holds clues to whether the patient would suffer from severe complications subsequent to HSCT. Here, we take a holobiont perspective and performed an integrated host-microbiota analysis of the gut, oral, and nasal microbiota in 29 children undergoing allo-HSCT. RESULTS: The bacterial diversity decreased in the gut, nose, and mouth during the first month and reconstituted again 1-3 months after allo-HSCT. The microbial community composition traversed three phases over 1 year. Distinct taxa discriminated the microbiota temporally at all three body sides, including Enterococcus spp., Lactobacillus spp., and Blautia spp. in the gut. Of note, certain microbial taxa appeared already changed in the patients prior to allo-HSCT as compared with healthy children. Acute GvHD occurring after allo-HSCT could be predicted from the microbiota composition at all three body sites prior to HSCT. The reconstitution of CD4+ T cells, TH17, and B cells was associated with distinct taxa of the gut, oral, and nasal microbiota. CONCLUSIONS: This study reveals for the first time bacteria in the mouth and nose that may predict aGvHD. Monitoring of the microbiota at different body sites in HSCT patients and particularly through involvement of samples prior to transplantation may be of prognostic value and could assist in guiding personalized treatment strategies. The identification of distinct bacteria that have a potential to predict post-transplant aGvHD might provide opportunities for an improved preventive clinical management, including a modulation of microbiomes. The host-microbiota associations shared between several body sites might also support an implementation of more feasible oral and nasal swab sampling-based analyses. Altogether, the findings suggest that the microbiota and host factors together could provide actionable information to guiding precision medicine. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Bactérias/genética , Criança , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos
6.
ACS Omega ; 6(22): 14551-14558, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124478

RESUMO

Poly(dimethylsiloxane) (PDMS) is an attractive, versatile, and convenient material for use in biomedical devices that are in direct contact with the user. A crucial component in such a device is its surface in terms of antimicrobial properties preventing infection. Moreover, due to its inherent hydrophobicity, PDMS is rather prone to microbial colonization. Thus, developing an antimicrobial PDMS surface in a simple, large-scale, and applicable manner is an essential step in fully exploiting PDMS in the biomedical device industry. Current chemical modification methods for PDMS surfaces are limited; therefore, we present herein a new method for introducing an atom transfer radical polymerization (ATRP) initiator onto the PDMS surface via the base-catalyzed grafting of [(chloromethyl)phenylethyl]trimethoxysilane to the PDMS. The initiator surface was grafted with poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) brushes via a surface-initiated supplemental activator and reducing agent ATRP (SI-SARA-ATRP). The use of sodium sulfite as a novel reducing agent in SI-SARA-ATRP allowed for polymerization during complete exposure to air. Moreover, a fast and linear growth was observed for the polymer over time, leading to a 400 nm thick polymer layer in a 120 min reaction time. Furthermore, the grafted PDMAEMA was quaternized, using various alkylhalides, in order to study the effect on surface antimicrobial properties. It was shown that antimicrobial activity not only depended highly on the charge density but also on the amphiphilicity of the surface. The fast reaction rate, high oxygen tolerance, increased antimicrobial activity, and the overall robustness and simplicity of the presented method collectively move PDMS closer to its full-scale exploitation in biomedical devices.

7.
Microorganisms ; 8(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255715

RESUMO

An inter-laboratory proficiency test was organized to assess the ability of participants to perform shotgun metagenomic sequencing of cold smoked salmon, experimentally spiked with a mock community composed of six bacteria, one parasite, one yeast, one DNA, and two RNA viruses. Each participant applied its in-house wet-lab workflow(s) to obtain the metagenomic dataset(s), which were then collected and analyzed using MG-RAST. A total of 27 datasets were analyzed. Sample pre-processing, DNA extraction protocol, library preparation kit, and sequencing platform, influenced the abundance of specific microorganisms of the mock community. Our results highlight that despite differences in wet-lab protocols, the reads corresponding to the mock community members spiked in the cold smoked salmon, were both detected and quantified in terms of relative abundance, in the metagenomic datasets, proving the suitability of shotgun metagenomic sequencing as a genomic tool to detect microorganisms belonging to different domains in the same food matrix. The implementation of standardized wet-lab protocols would highly facilitate the comparability of shotgun metagenomic sequencing dataset across laboratories and sectors. Moreover, there is a need for clearly defining a sequencing reads threshold, to consider pathogens as detected or undetected in a food sample.

9.
Front Microbiol ; 9: 2153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245684

RESUMO

Bacterial resistance to classical antibiotics is emerging worldwide. The number of infections caused by multidrug resistant bacteria is increasing and becoming a serious threat for human health globally. In particular, Gram-negative pathogens including multidrug resistant Escherichia coli are of serious concern being resistant to the currently available antibiotics. All Gram-negative bacteria are enclosed by an outer membrane which acts as an additional protection barrier preventing the entry of toxic compounds including antibiotics and antimicrobial peptides (AMPs). In this study we report that the outer membrane component lipopolysaccharide (LPS) plays a crucial role for the antimicrobial susceptibility of E. coli BW25113 against the cationic AMPs Cap18, Cap11, Cap11-1-18m2, melittin, indolicidin, cecropin P1, cecropin B, and the polypeptide antibiotic colistin, whereas the outer membrane protease OmpT and the lipoprotein Lpp only play a minor role for the susceptibility against cationic AMPs. Increased susceptibility toward cationic AMPs was found for LPS deficient mutants of E. coli BW25113 harboring deletions in any of the genes required for the inner part of core-oligosaccharide of the LPS, waaC, waaE, waaF, waaG, and gmhA. In addition, our study demonstrates that the antimicrobial activity of Cap18, Cap11, Cap11-1-18m2, cecropin B, and cecropin P1 is not only dependent on the inner part of the core oligosaccharide, but also on the outer part and its sugar composition. Finally, we demonstrated that the antimicrobial activity of selected Cap18 derivatives harboring amino acid substitutions in the hydrophobic interface, are non-active against wild-type E. coli ATCC29522. By deleting waaC, waaE, waaF, or waaG the antimicrobial activity of the non-active derivatives can be partially or fully restored, suggesting a very close interplay between the LPS core oligosaccharide and the specific Cap18 derivative. Summarizing, this study implicates that the nature of the outer membrane component LPS has a big impact on the antimicrobial activity of cationic AMPs against E. coli. In particular, the inner as well as the outer part of the core oligosaccharide are important elements determining the antimicrobial susceptibility of E. coli against cationic AMPs.

10.
PLoS One ; 13(5): e0197742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29852015

RESUMO

Due to the rapid emergence of resistance to classical antibiotics, novel antimicrobial compounds are needed. It is desirable to selectively kill pathogenic bacteria without targeting other beneficial bacteria in order to prevent the negative clinical consequences caused by many broad-spectrum antibiotics as well as reducing the development of antibiotic resistance. Antimicrobial peptides (AMPs) represent an alternative to classical antibiotics and it has been previously demonstrated that Cap18 has high antimicrobial activity against a broad range of bacterial species. In this study we report the design of a positional scanning library consisting of 696 Cap18 derivatives and the subsequent screening for antimicrobial activity against Y. ruckeri, A. salmonicida, S. Typhimurium and L. lactis as well as for hemolytic activity measuring the hemoglobin release of horse erythrocytes. We show that the hydrophobic face of Cap18, in particular I13, L17 and I24, is essential for its antimicrobial activity against S. Typhimurium, Y. ruckeri, A. salmonicida, E. coli, P. aeruginosa, L. lactis, L. monocytogenes and E. faecalis. In particular, Cap18 derivatives harboring a I13D, L17D, L17P, I24D or I24N substitution lost their antimicrobial activity against any of the tested bacterial strains. In addition, we were able to generate species-specific Cap18 derivatives by particular amino acid substitutions either in the hydrophobic face at positions L6, L17, I20, and I27, or in the hydrophilic face at positions K16 and K18. Finally, our data showed the proline residue at position 29 to be essential for the inherent low hemolytic activity of Cap18 and that substitution of the residues K16, K23, or G21 by any hydrophobic residues enhances the hemolytic activity. This study demonstrates the potential of generating species-specific AMPs for the selective elimination of bacterial pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Hemolíticos/farmacologia , Aeromonas salmonicida/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Hemolíticos/química , Cavalos , Testes de Sensibilidade Microbiana , Biblioteca de Peptídeos , Salmonella typhimurium/efeitos dos fármacos , Yersinia ruckeri/efeitos dos fármacos , Catelicidinas
11.
Genome Announc ; 5(16)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428290

RESUMO

Acinetobacter johnsonii C6 originates from creosote-polluted groundwater and performs ecological and evolutionary interactions with Pseudomonas putida in biofilms. The draft genome of A. johnsonii C6 is 3.7 Mbp and was shaped by mobile genetic elements. It reveals genes facilitating the biodegradation of aromatic hydrocarbons and resistance to antimicrobials and metals.

12.
J Antimicrob Chemother ; 72(2): 385-392, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28115502

RESUMO

OBJECTIVES: Reliable methods for monitoring antimicrobial resistance (AMR) in livestock and other reservoirs are essential to understand the trends, transmission and importance of agricultural resistance. Quantification of AMR is mostly done using culture-based techniques, but metagenomic read mapping shows promise for quantitative resistance monitoring. METHODS: We evaluated the ability of: (i) MIC determination for Escherichia coli; (ii) cfu counting of E. coli; (iii) cfu counting of aerobic bacteria; and (iv) metagenomic shotgun sequencing to predict expected tetracycline resistance based on known antimicrobial consumption in 10 Danish integrated slaughter pig herds. In addition, we evaluated whether fresh or manure floor samples constitute suitable proxies for intestinal sampling, using cfu counting, qPCR and metagenomic shotgun sequencing. RESULTS: Metagenomic read-mapping outperformed cultivation-based techniques in terms of predicting expected tetracycline resistance based on antimicrobial consumption. Our metagenomic approach had sufficient resolution to detect antimicrobial-induced changes to individual resistance gene abundances. Pen floor manure samples were found to represent rectal samples well when analysed using metagenomics, as they contain the same DNA with the exception of a few contaminating taxa that proliferate in the extraintestinal environment. CONCLUSIONS: We present a workflow, from sampling to interpretation, showing how resistance monitoring can be carried out in swine herds using a metagenomic approach. We propose metagenomic sequencing should be part of routine livestock resistance monitoring programmes and potentially of integrated One Health monitoring in all reservoirs.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Fezes/microbiologia , Metagenômica/métodos , Suínos/microbiologia , Resistência a Tetraciclina , Animais , Contagem de Colônia Microbiana , Dinamarca , Microbiologia Ambiental , Monitoramento Epidemiológico , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real
13.
PLoS One ; 10(12): e0144611, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26656394

RESUMO

ANALYSIS OF A SELECTED SET OF ANTIMICROBIAL PEPTIDES: The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. CAP18 SHOWS A HIGH BROAD SPECTRUM ANTIMICROBIAL ACTIVITY: Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our findings from analyzing LPS mutant strains suggest that the core oligosaccharide of the LPS molecule is not essential for the antimicrobial activity of cationic AMPs, but in fact has a protective role against AMPs.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lipopolissacarídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Farmacorresistência Bacteriana Múltipla/genética , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Hemólise/efeitos dos fármacos , Cavalos , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Peptídeo Hidrolases/química , Estabilidade Proteica , Proteólise , Relação Estrutura-Atividade , Temperatura
14.
J Antimicrob Chemother ; 69(10): 2650-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24908045

RESUMO

OBJECTIVES: To compare and characterize extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli from pigsties, pig farmers and their families on farms with previous high or no use of third- or fourth-generation cephalosporins. METHODS: Twenty farms with no third- or fourth-generation cephalosporin use and 19 herds with previous frequent use were included. The ESBL-producing isolates detected in humans and pigs were characterized by ESBL genotype, PFGE, susceptibility to non-ß-lactam antibiotics and phylotype, and selected isolates were characterized by multilocus sequence typing (MLST). Furthermore, transferability of bla(CTX-M-)1 from both human and pig isolates was studied and plasmid incompatibility groups were defined. The volunteers answered a questionnaire including epidemiological risk factors for carriage of ESBL-producing E. coli. RESULTS: ESBL-producing E. coli was detected in pigs on 79% of the farms with high consumption of cephalosporins compared with 20% of the pigs on farms with no consumption. ESBL-producing E. coli was detected in 19 of the 195 human participants and all but one had contact with pigs. The genes found in both humans and pigs at the same farms were blaCTX-M-1 (eight farms), bla(CTX-M-14) (one farm) and bla(SHV-12) (one farm). At four farms ESBL-producing E. coli isolates with the same CTX-M enzyme, phylotype, PFGE type and MLST type were detected in both pigs and farmers. The majority of the plasmids with bla(CTX-M-1) were transferable by conjugation and belonged to incompatibility group IncI1, IncF, or IncN. CONCLUSIONS: The present study shows an increased frequency of ESBL-producing E. coli on farms with high consumption of third- or fourth-generation cephalosporins and indicates transfer of either ESBL-producing E. coli or plasmids between pigs and farmers.


Assuntos
Antibacterianos/farmacologia , Resistência às Cefalosporinas/genética , Cefalosporinas/farmacologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Doenças dos Suínos/microbiologia , beta-Lactamases/genética , Adulto , Agricultura , Animais , Estudos Transversais , Dinamarca , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos/genética , Suínos , Adulto Jovem
15.
J Food Prot ; 75(3): 456-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22410218

RESUMO

The spread of epidemically successful nontyphoidal Salmonella clones has been suggested as the most important cause of salmonellosis in industrialized countries. Factors leading to the emergence of success clones are largely unknown, but their ability to survive and grow after physical stress may contribute. During epidemiological studies, a mathematical model was developed that allowed estimation of a factor (q) accounting for the relative ability of Salmonella serovars with different antimicrobial resistances to survive in the food chain and cause human disease. Based on this q-factor, 26 Salmonella isolates were characterized as successful or nonsuccessful. We studied the survival and growth of stationary- and exponential-phase cells of these isolates after freezing for up to 336 days in minced meat. We also investigated survival and growth after dehydration at 10°C and 82% relative humidity (RH) and 25°C and 49% RH for 112 days. Stationary-phase cells were reduced by less than 1 log unit during 1 year of freezing, and growth was initiated with an average lag phase of 1.7 h. Survival was lower in exponentialphase cells, but lag phases tended to be shorter. High humidity and low temperature were less harmful to Salmonella than were low humidity and high temperature. Tolerance to adverse conditions was highest for Salmonella Infantis and one Salmonella Typhimurium U292 isolate and lowest for Salmonella Derby and one Salmonella Typhimurium DT170 isolate. Dehydration, in contrast to freezing, was differently tolerated by the Salmonella strains in this study, but tolerance to freezing and dehydration does not appear to contribute to the emergence of successful Salmonella clones.


Assuntos
Dessecação , Contaminação de Alimentos/prevenção & controle , Congelamento , Produtos da Carne/microbiologia , Salmonella enterica/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Humanos , Cinética , Viabilidade Microbiana , Intoxicação Alimentar por Salmonella/prevenção & controle
16.
Int J Food Microbiol ; 140(2-3): 192-200, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20471709

RESUMO

One specific DNA-subtype, as determined by RAPD, of Listeria monocytogenes persisted in a fish slaughterhouse for years, even during months with no production where the plant was cleaned and kept dry. We hypothesised that tolerance to desiccation could be a factor in explaining the persistence of L. monocytogenes in food processing environments and the purpose of the present study was to determine ability of L. monocytogenes to survive desiccation on stainless steel under simulated food processing conditions. Viable counts of eight different L. monocytogenes strains exposed to different soils and relative humidities (RHs) during desiccation decreased significantly (p<0.05) during the first week but subsequently remained constant at a plateau for weeks or even months thereafter. Desiccation in physiological peptone saline (PPS) reduced survivors by 3-5 log units whereas bacterial cells suspended in bacteriological growth substrates (tryptone soy broth with 1% glucose, TSB-glu) or PPS with 5% NaCl only were reduced by 1-3 log units. At RHs of 2, 43 and 75%, surfaces were visibly dry after 1, 3 and 5days of incubation, respectively. The lowest RH resulted in the most significant loss of viability, however, 10(3)-10(4)CFU/cm(2) remained viable regardless of the desiccation treatment (i.e., presence of TSB-glu and/or salt). At 75% RH, the bacterial counts remained almost constant when desiccated in TSB-glu. When bacteria were grown and desiccated (15 degrees C, 43% RH) in salmon or smoked salmon juice, survivors decreased slowly resulting in low numbers (10(2)-10(3)CFU/cm(2)) from all eight strains remaining viable after 3months. Whilst conditions during desiccation had a pronounced influence on inactivation kinetics and the number of survivors, persistent L. monocytogenes were not more tolerant to desiccation than presumed non-persistent isolates. Our study shows that the ability to survive for months during desiccated conditions may be a factor explaining the ability of L. monocytogenes to persist in food processing environments.


Assuntos
Dessecação , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Viabilidade Microbiana , Cloreto de Sódio/farmacologia , Meios de Cultura/farmacologia , Microbiologia de Alimentos , Umidade , Listeria monocytogenes/química , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA