Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 8993-9001, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324211

RESUMO

Two-dimensional (2D) materials stand as a promising platform for tunnel field-effect transistors (TFETs) in the pursuit of low-power electronics for the Internet of Things era. This promise arises from their dangling bond-free van der Waals heterointerface. Nevertheless, the attainment of high device performance is markedly impeded by the requirement of precise control over the 2D assembly with multiple stacks of different layers. In this study, we addressed a thickness-modulated n/p+-homojunction prepared from Nb-doped p+-MoS2 crystal, where the issue on interface traps can be neglected without any external interface control due to the homojunction. Notably, our observations reveal the existence of a negative differential resistance, even at room temperature (RT). This signifies the successful realization of TFET operation under type III band alignment conditions by a single gate at RT, suggesting that the dominant current mechanism is band-to-band tunneling due to the ideal interface.

2.
ACS Appl Mater Interfaces ; 15(22): 26977-26984, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222246

RESUMO

For the complementary operation of two-dimensional (2D) material-based field-effect transistors (FETs), high-performance p-type FETs are essential. In this study, we applied surface charge-transfer doping from WOx, which has a large work function of ∼6.5 eV, selectively to the access region of WS2 and WSe2 by covering the channel region with h-BN. By reducing the Schottky barrier width at the contact and injecting holes into the valence band, the p-type conversion of intrinsically n-type trilayer WSe2 FET was successfully achieved. However, trilayer WS2 did not show clear p-type conversion because its valence band maximum is 0.66 eV lower than that of trilayer WSe2. Although inorganic WOx boasts high air stability and fabrication process compatibility due to its high thermal budget, the trap sites in WOx cause large hysteresis during back gate operation of WSe2 FETs. However, by using top gate (TG) operation with an h-BN protection layer as a TG insulator, a high-performance p-type WSe2 FET with negligible hysteresis was achieved.

3.
Adv Mater ; 35(29): e2301172, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148528

RESUMO

The shift-current photovoltaics of group-IV monochalcogenides has been predicted to be comparable to those of state-of-the-art Si-based solar cells. However, its exploration has been prevented from the centrosymmetric layer stacking in the thermodynamically stable bulk crystal. Herein, the non-centrosymmetric layer stacking of tin sulfide (SnS) is stabilized in the bottom regions of SnS crystals grown on a van der Waals substrate by physical vapor deposition and the shift current of SnS, by combining the polarization angle dependence and circular photogalvanic effect, is demonstrated. Furthermore, 180° ferroelectric domains in SnS are verified through both piezoresponse force microscopy and shift-current mapping techniques. Based on these results, an atomic model of the ferroelectric domain boundary is proposed. The direct observation of shift current and ferroelectric domains reported herein paves a new path for future studies on shift-current photovoltaics.

4.
ACS Nano ; 17(7): 6545-6554, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36847351

RESUMO

In-plane heterostructures of transition metal dichalcogenides (TMDCs) have attracted much attention for high-performance electronic and optoelectronic devices. To date, mainly monolayer-based in-plane heterostructures have been prepared by chemical vapor deposition (CVD), and their optical and electrical properties have been investigated. However, the low dielectric properties of monolayers prevent the generation of high concentrations of thermally excited carriers from doped impurities. To solve this issue, multilayer TMDCs are a promising component for various electronic devices due to the availability of degenerate semiconductors. Here, we report the fabrication and transport properties of multilayer TMDC-based in-plane heterostructures. The multilayer in-plane heterostructures are formed through CVD growth of multilayer MoS2 from the edges of mechanically exfoliated multilayer flakes of WSe2 or NbxMo1-xS2. In addition to the in-plane heterostructures, we also confirmed the vertical growth of MoS2 on the exfoliated flakes. For the WSe2/MoS2 sample, an abrupt composition change is confirmed by cross-sectional high-angle annular dark-field scanning transmission electron microscopy. Electrical transport measurements reveal that a tunneling current flows at the NbxMo1-xS2/MoS2 in-plane heterointerface, and the band alignment is changed from a staggered gap to a broken gap by electrostatic electron doping of MoS2. The formation of a staggered gap band alignment of NbxMo1-xS2/MoS2 is also supported by first-principles calculations.

5.
Nanoscale Adv ; 5(2): 405-411, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756254

RESUMO

The defect-free surface of MoS2 is of high importance for applications in electronic devices. Theoretical calculations have predicted that oxidative etching could be responsible for sulfur vacancy formation. No direct experimental evidence, however, points out the role of adsorbed oxygen on sulfur vacancy formation for MoS2, especially on an insulating SiO2/Si substrate. Herein, by applying thermal desorption spectroscopy, we found that sulfur loss can be tightly coupled to adsorbed oxygen, as confirmed by observation of SO2 desorption. With annealing MoS2, even under ultrahigh vacuum, oxygen molecules adsorbed on MoS2 assist the sulfur atom in dissociating from MoS2, and thus, defects are formed as the result of SO2 desorption from 200 °C to 600 °C. At higher temperatures (over 800 °C), on the other hand, direct sulfur desorption becomes dominant. This finding can be well explained by combining the morphology investigation enabled by atomic layer deposition at defective sites and optical transitions observed by photoluminescence measurements. Moreover, a preannealing treatment prior to exfoliation was found to be an effective method to remove the adsorbed oxygen, thus preventing defect formation.

6.
Small ; 19(15): e2207394, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36631287

RESUMO

Achieving the direct growth of an ultrathin gate insulator with high uniformity and high quality on monolayer transition metal dichalcogenides (TMDCs) remains a challenge due to the chemically inert surface of TMDCs. Although the main solution for this challenge is utilizing buffer layers before oxide is deposited on the atomic layer, this method drastically degrades the total capacitance of the gate stack. In this work, we constructed a novel direct high-κ Er2 O3 deposition system based on thermal evaporation in a differential-pressure-type chamber. A uniform Er2 O3 layer with an equivalent oxide thickness of 1.1 nm was achieved as the gate insulator for top-gated MoS2 field-effect transistors (FETs). The top gate Er2 O3 insulator without the buffer layer on MoS2 exhibited a high dielectric constant that reached 18.0, which is comparable to that of bulk Er2 O3 and is the highest among thin insulators (< 10 nm) on TMDCs to date. Furthermore, the Er2 O3 /MoS2 interface (Dit  ≈ 6 × 1011 cm-2 eV-1 ) is confirmed to be clean and is comparable with that of the h-BN/MoS2 heterostructure. These results prove that high-quality dielectric properties with retained interface quality can be achieved by this novel deposition technique, facilitating the future development of 2D electronics.

7.
Sci Technol Adv Mater ; 23(1): 275-299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557511

RESUMO

The past decades of materials science discoveries are the basis of our present society - from the foundation of semiconductor devices to the recent development of internet of things (IoT) technologies. These materials science developments have depended mainly on control of rigid chemical bonds, such as covalent and ionic bonds, in organic molecules and polymers, inorganic crystals and thin films. The recent discovery of graphene and other two-dimensional (2D) materials offers a novel approach to synthesizing materials by controlling their weak out-of-plane van der Waals (vdW) interactions. Artificial stacks of different types of 2D materials are a novel concept in materials synthesis, with the stacks not limited by rigid chemical bonds nor by lattice constants. This offers plenty of opportunities to explore new physics, chemistry, and engineering. An often-overlooked characteristic of vdW stacks is the well-defined 2D nanospace between the layers, which provides unique physical phenomena and a rich field for synthesis of novel materials. Applying the science of intercalation compounds to 2D materials provides new insights and expectations about the use of the vdW nanospace. We call this nascent field of science '2.5 dimensional (2.5D) materials,' to acknowledge the important extra degree of freedom beyond 2D materials. 2.5D materials not only offer a new field of scientific research, but also contribute to the development of practical applications, and will lead to future social innovation. In this paper, we introduce the new scientific concept of this science of '2.5D materials' and review recent research developments based on this new scientific concept.

8.
ACS Appl Mater Interfaces ; 14(22): 25731-25740, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623013

RESUMO

The difficulty of current injection into single-crystalline hexagonal boron nitride (h-BN) has long hindered the realization of h-BN-based high-performance electronic and optoelectronic devices. Here, with the contact formed by Ar plasma treatment, Ni/Au metal deposition, and subsequent high-temperature annealing, we demonstrate current injection into single-crystalline h-BN with a C doping level of ∼1.5 × 1019 atoms/cm3. A comparison to the current flow during the dielectric breakdown of h-BN clearly verifies our current injection. The devices show non-Ohmic conduction for all measured temperatures (20-598 K). Analysis of activation energies for carrier transport suggests nearest-neighbor-hopping-assisted Poole-Frenkel (PF) conduction in the highly defective h-BN at the contact region. The estimated dominant defect level with the range of 240-720 meV is much smaller than the Schottky barrier height at the metal/h-BN interface, supporting the effective contact formation for current injection. Moreover, structural and chemical characterizations at the contact suggest that an interaction between Ni and defective h-BN introduces defect states in the gap, assisting the current injection. In contrast, the characterizations confirm the well-retained high crystallinity of h-BN in the channel, indicating the potential of the present contact formation method for the future development of high-performance h-BN-based devices.

9.
ACS Appl Mater Interfaces ; 14(22): 25659-25669, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604943

RESUMO

Recently, the ultrafast operation (∼20 ns) of a two-dimensional (2D) heterostructured nonvolatile memory (NVM) device was demonstrated, attracting considerable attention. However, there is no consensus on its physical origin. In this study, various 2D NVM device structures are compared. First, we reveal that the hole injection at the metal/MoS2 interface is the speed-limiting path in the NVM device with the access region. Therefore, MoS2 NVM devices with a direct tunneling path between source/drain electrodes and the floating gate are fabricated by removing the access region. Indeed, a 50 ns program/erase operation is successfully achieved for devices with metal source/drain electrodes as well as graphite source/drain electrodes. This controlled experiment proves that an atomically sharp interface is not necessary for ultrafast operation, which is contrary to the previous literature. Finally, the dielectric breakdown strength (EBD) of h-BN under short voltage pulses is examined. Since a high dielectric breakdown strength allows a large tunneling current, ultrafast operations can be achieved. Surprisingly, an EBD = 26.1 MV/cm for h-BN is realized under short voltage pulses, largely exceeding the EBD = ∼12 MV/cm from the direct current (DC) measurement. This suggests that the high EBD of h-BN can be the physical origin of the ultrafast operation.

10.
ACS Appl Mater Interfaces ; 14(17): 19928-19937, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442622

RESUMO

Searching for the counterpart of well-developed two-dimensional (2D) n-type field effect transistors (FETs) is indispensable for complementary logic circuit applications for 2D devices. Although SnS is regarded as a potential candidate for high-performance p-type FETs, recent experiments only show poor results deviating from the theoretically predicted high mobility. In this research, the serious performance degradation due to the surface oxidation of SnS, which commonly occurs in most 2D materials, is addressed through surface oxide conversion using highly reactive Ti. In this conversion process, which is confirmed by systematic characterization, the reduction of SnS surface oxide is accompanied by the formation of functional titanium oxide, which works as both a conductive intermediate layer to improve the contact property and a buffer layer of the high-k top gate insulator at the channel region. Consequently, a record-high field effect mobility of 87.4 cm2 V-1 s-1 in SnS p-type FETs is achieved. The surface oxide conversion method applied here is consistent with our previous thermodynamic prediction, and this novel technique can be widely introduced to all 2D materials that are vulnerable to oxidation and facilitate the future development of 2D devices.

11.
ACS Appl Mater Interfaces ; 13(36): 43282-43289, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478258

RESUMO

Surface oxidation is an unneglectable problem for 2D semiconductors because it hinders the practical application of 2D material-based devices. In this research, the oxidation of layered materials is investigated by a thermodynamic approach to verify their oxidation tendency. It was found that almost all 2D materials are thermodynamically unstable in the presence of oxygen at room temperature. Two potential solutions for surface oxidation are proposed in this work: (i) the conversion of the surface oxides to functional oxides through the deposition of active metals and (ii) the recovery of original 2D materials from the surface oxides by 2D material heterostructure formation with the same chalcogen group. Supported by thermodynamic calculations, both approaches are feasible to ameliorate the surface oxides of 2D materials by the appropriate selection of metals for deposition or 2D materials for heterostructure formation. Thermodynamic data of 64 elements and 75 2D materials are included and compared in this research, which can improve gate insulator or electrode contact material selection in 2D devices to solve the surface oxidation issue. For instance, yttrium and titanium are good candidates for surface oxide conversion, while zirconium and hafnium chalcogenide can trigger the recovery of original 2D materials from their surface oxides. The systematic diagrams presented in this work can serve as a guideline for considering surface oxidation in future device fabrication from various 2D materials.

12.
ACS Nano ; 15(4): 6658-6668, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33765381

RESUMO

Two-dimensional heterostructures have been extensively investigated as next-generation nonvolatile memory (NVM) devices. In the past decade, drastic performance improvements and further advanced functionalities have been demonstrated. However, this progress is not sufficiently supported by the understanding of their operations, obscuring the material and device structure design policy. Here, detailed operation mechanisms are elucidated by exploiting the floating gate (FG) voltage measurements. Systematic comparisons of MoTe2, WSe2, and MoS2 channel devices revealed that the tunneling behavior between the channel and FG is controlled by three kinds of current-limiting paths, i.e., tunneling barrier, 2D/metal contact, and p-n junction in the channel. Furthermore, the control experiment indicated that the access region in the device structure is required to achieve 2D channel/FG tunneling by preventing electrode/FG tunneling. The present understanding suggests that the ambipolar 2D-based FG-type NVM device with the access region is suitable for further realizing potentially high electrical reliability.

13.
Small ; 16(47): e2004907, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33140573

RESUMO

The memory window of floating gate (FG) type non-volatile memory (NVM) devices is a fundamental figure of merit used not only to evaluate the performance, such as retention and endurance, but also to discuss the feasibility of advanced functional memory devices. However, the memory window of 2D materials based NVM devices is historically determined from round sweep transfer curves, while that of conventional Si NVM devices is determined from high and low threshold voltages (Vth s), which are measured by single sweep transfer curves. Here, it is elucidated that the memory window of 2D NVM devices determined from round sweep transfer curves is overestimated compared with that determined from single sweep transfer curves. The floating gate voltage measurement proposed in this study clarifies that the Vth s in round sweep are controlled not only by the number of charges stored in floating gate but also by capacitive coupling between floating gate and back gate. The present finding on the overestimation of memory window enables to appropriately evaluate the potential of 2D NVM devices.

14.
ACS Appl Mater Interfaces ; 12(46): 51598-51606, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146991

RESUMO

Van der Waals heterostructures are the ideal material platform for tunnel field-effect transistors (TFETs) because a band-to-band tunneling (BTBT) dominant current is feasible at room temperature (RT) because of ideal, dangling bond-free heterointerfaces. However, achieving subthreshold swing (SS) values lower than 60 mV dec-1 of the Boltzmann limit is still challenging. In this work, we systematically studied the band alignment and heterointerface quality in n-MoS2 channel heterostructure TFETs. By selecting a p+-MoS2 source with a sufficiently high doping level, stable gate modulation to a type III band alignment was achieved regardless of the number of MoS2 channel layers. For the gate stack formation, it was found that the deposition of Al2O3 as the top gate introduces defect states for the generation current under reverse bias, while the integration of a hexagonal boron nitride (h-BN) top gate provides a defect-free, clean interface, resulting in the BTBT dominant current even at RT. All 2D heterostructure TFETs produced by combining the type III n-MoS2/p+-MoS2 heterostructure with the h-BN top-gate insulator resulted in low SS values at RT.

15.
ACS Nano ; 14(6): 6834-6844, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32407070

RESUMO

Controlling the stacking order in bilayer graphene (BLG) allows realizing interesting physical properties. In particular, the possibility of tuning the band gap in Bernal-stacked (AB) BLG (AB-BLG) has a great technological importance for electronic and optoelectronic applications. Most of the current methods to produce AB-BLG suffer from inhomogeneous layer thickness and/or coexistence with twisted BLG. Here, we demonstrate a method to synthesize highly pure large-area AB-BLG by chemical vapor deposition using Cu-Ni films. Increasing the reaction time resulted in a gradual increase of the AB stacking, with the BLG eventually free from twist regions for the longer growth times (99.4% of BLG has AB stacking), due to catalyst-assisted continuous BLG reconstruction driven by carbon dissolution-segregation processes. The band gap opening was confirmed by the electrical measurements on field-effect transistors using two different device configurations. The concept of the continuous reconstruction to achieve highly pure AB-BLG offers a way to control the stacking order of catalytically grown two-dimensional materials.

16.
Nat Commun ; 11(1): 2428, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415121

RESUMO

2D van der Waals ferroelectrics have emerged as an attractive building block with immense potential to provide multifunctionality in nanoelectronics. Although several accomplishments have been reported in ferroelectric switching for out-of-plane ferroelectrics down to the monolayer, a purely in-plane ferroelectric has not been experimentally validated at the monolayer thickness. Herein, an in-plane ferroelectricity is demonstrated for micrometer-size monolayer SnS at room temperature. SnS has been commonly regarded to exhibit the odd-even effect, where the centrosymmetry breaks only in the odd-number layers to exhibit ferroelectricity. Remarkably, however, a robust room temperature ferroelectricity exists in SnS below a critical thickness of 15 layers with both an odd and even number of layers, suggesting the possibility of controlling the stacking sequence of multilayer SnS beyond the limit of ferroelectricity in the monolayer. This work will pave the way for nanoscale ferroelectric applications based on SnS as a platform for in-plane ferroelectrics.

17.
ACS Appl Mater Interfaces ; 11(3): 2730-2733, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29508605

RESUMO

Graphdiyne (GDY) comprises an important class in functional covalent organic nanosheets based on carbon-carbon bond formation, and recent focus has collected in the expansion of its variations. Here we report on the synthesis of a GDY analogue, TP-GDY, which has triphenylene as the aromatic core. Our liquid/liquid interfacial synthesis for GDY ( J. Am. Chem. Soc. 2017, 139, 3145) was modified for hexaethynyltriphenylene monomer to afford a TP-GDY film with a free-standing morphology, a smooth texture, a domain size of >1 mm, and a thickness of 220 nm. Resultant TP-GDY is characterized by series of microscopies, spectroscopies, and thermogravimetric and gas adsorption analyses.

18.
Nanoscale ; 10(47): 22474-22483, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30480284

RESUMO

Remarkable optical/electrical features are expected in two-dimensional group-IV monochalcogenides (MXs; M = Sn/Ge and X = S/Se) with a uniquely distorted layered structure. The lone pair electrons in the group-IV atoms are the origin of this structural distortion, while they also cause a strong interlayer force and high chemical reactivity. The fabrication of chemically stable few-to-monolayer MX has been a significant challenge. We have observed that, once the SnS surface is oxidized, the SnOx top layer works as a passivation layer for the SnS layer underneath. In this work, the SnOx/SnS hetero-structure is studied structurally, optically, and electrically. When tape-exfoliated bulk SnS is oxygen-annealed under a reduced pressure at 10 Pa, surface oxidation and SnS sublimation proceed simultaneously, resulting in a monolayer-thick SnS layer with the SnOx passivation layer. The field-effect transistor of nine-layer SnS prepared via mechanical exfoliation exhibits a p-type characteristic because of intrinsic Sn vacancies, whereas ambipolar behavior is observed for the monolayer-thick SnS obtained via oxygen annealing probably owing to the additional n-type doping by S vacancies. This work on monolayer-thick SnS fabrication can be applied to other unstable lone pair analogues and can facilitate future research on MXs.

19.
ACS Appl Mater Interfaces ; 10(34): 28780-28788, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30080037

RESUMO

Bilayer graphene field effect transistors (BLG-FETs), unlike conventional semiconductors, are greatly sensitive to potential fluctuations because of the charged impurities in high- k gate stacks because the potential difference between two layers induced by the external perpendicular electrical filed is the physical origin behind the band gap opening. The assembly of BLG with layered h-BN insulators into a van der Waals heterostructure has been widely recognized to achieve the superior electrical transport properties. However, the carrier response properties at the h-BN/BLG heterointerface, which control the device performance, have not yet been revealed because of the inevitably large parasitic capacitance. In this study, the significant reduction of potential fluctuations to ∼1 meV is achieved in an all-two-dimensional heterostructure BLG-FET on a quartz substrate, which results in the suppression of the off-current to the measurement limit at a small band gap of ∼90 meV at 20 K. By capacitance measurement, we demonstrate that the electron trap/detrap response at such heterointerface is suppressed to undetectable level in the measurement frequency range. The electrically inert van der Waals heterointerface paves the way for the realization of future BLG electronics applications.

20.
ACS Appl Mater Interfaces ; 10(38): 32355-32364, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30146878

RESUMO

Understanding the operation mode of a two-dimensional (2D) material-based field-effect transistor (FET) is one of the most essential issues in the study of electronics and physics. The existing Schottky barrier FET model for devices with global back gate and metallic contacts overemphasizes the metal/2D contact effect, and the widely observed residual conductance cannot be explained by this model. Here, an accumulation-mode (ACCU) FET model, which directly reveals 2D channel transport properties, is developed based on a partial top-gate MoS2 FET with metallic contacts and a channel thickness of 0.65-118 nm. The operation mechanism of an ACCU-FET is validated and clarified by carefully performed capacitance measurements. A depletion capacitance-quantum capacitance transition is observed. After the analysis of the MoS2 ACCU-FET, we have confirmed that most 2D FETs show an accumulation-mode behavior. The universal thickness scaling rule of 2D-FETs is then proposed, which provides guidance for future research on 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA