Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746552

RESUMO

Several approaches have produced an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since millions of people are exposed to influenza virus and SARS-CoV-2, it is of great interest to develop a two-in-one vaccine that will be able to protect against infection of both viruses. We have developed a hybrid vaccine for SARS-CoV-2 and influenza viruses using influenza virus-like particles (VLP) incorporated by protein transfer with glycosylphosphatidylinositol (GPI)-anchored SARS-CoV-2 RBD fused to GM-CSF as an adjuvant. GPI-RBD-GM-CSF fusion protein was expressed in CHO-S cells, purified and incorporated onto influenza VLPs to develop the hybrid vaccine. Our results show that the hybrid vaccine induced a strong antibody response and protected mice from both influenza virus and mouse-adapted SARS-CoV-2 challenges, with vaccinated mice having significantly lower lung viral titers compared to naive mice. These results suggest that a hybrid vaccine strategy is a promising approach for developing multivalent vaccines to prevent influenza A and SARS-CoV-2 infections.

2.
J Vis Exp ; (140)2018 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-30394373

RESUMO

The biological small-angle neutron scattering instrument at the High-Flux Isotope Reactor of Oak Ridge National Laboratory is dedicated to the investigation of biological materials, biofuel processing, and bio-inspired materials covering nanometer to micrometer length scales. The methods presented here for investigating physical properties (i.e., size and shape) of membrane proteins (here, MmIAP, an intramembrane aspartyl protease from Methanoculleus marisnigri) in solutions of micelle-forming detergents are well-suited for this small-angle neutron scattering instrument, among others. Other biophysical characterization techniques are hindered by their inability to address the detergent contributions in a protein-detergent complex structure. Additionally, access to the Bio-Deuteration Lab provides unique capabilities for preparing large-scale cultivations and expressing deuterium-labeled proteins for enhanced scattering signal from the protein. While this technique does not provide structural details at high-resolution, the structural knowledge gap for membrane proteins contains many addressable areas of research without requiring near-atomic resolution. For example, these areas include determination of oligomeric states, complex formation, conformational changes during perturbation, and folding/unfolding events. These investigations can be readily accomplished through applications of this method.


Assuntos
Detergentes/química , Proteínas de Membrana/química , Difração de Nêutrons/métodos , Espalhamento a Baixo Ângulo
3.
Biophys J ; 114(3): 602-608, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29414706

RESUMO

Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, and octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-ß-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. Our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.


Assuntos
Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/metabolismo , Membrana Celular/enzimologia , Maltose/análogos & derivados , Nêutrons , Espalhamento a Baixo Ângulo , Animais , Humanos , Maltose/química , Maltose/metabolismo , Modelos Moleculares , Especificidade por Substrato
4.
J Biol Chem ; 293(13): 4653-4663, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382721

RESUMO

Mechanistic details of intramembrane aspartyl protease (IAP) chemistry, which is central to many biological and pathogenic processes, remain largely obscure. Here, we investigated the in vitro kinetics of a microbial intramembrane aspartyl protease (mIAP) fortuitously acting on the renin substrate angiotensinogen and the C-terminal transmembrane segment of amyloid precursor protein (C100), which is cleaved by the presenilin subunit of γ-secretase, an Alzheimer disease (AD)-associated IAP. mIAP variants with substitutions in active-site and putative substrate-gating residues generally exhibit impaired, but not abolished, activity toward angiotensinogen and retain the predominant cleavage site (His-Thr). The aromatic ring, but not the hydroxyl substituent, within Tyr of the catalytic Tyr-Asp (YD) motif plays a catalytic role, and the hydrolysis reaction incorporates bulk water as in soluble aspartyl proteases. mIAP hydrolyzes the transmembrane region of C100 at two major presenilin cleavage sites, one corresponding to the AD-associated Aß42 peptide (Ala-Thr) and the other to the non-pathogenic Aß48 (Thr-Leu). For the former site, we observed more favorable kinetics in lipid bilayer-mimicking bicelles than in detergent solution, indicating that substrate-lipid and substrate-enzyme interactions both contribute to catalytic rates. High-resolution MS analyses across four substrates support a preference for threonine at the scissile bond. However, results from threonine-scanning mutagenesis of angiotensinogen demonstrate a competing positional preference for cleavage. Our results indicate that IAP cleavage is controlled by both positional and chemical factors, opening up new avenues for selective IAP inhibition for therapeutic interventions.


Assuntos
Proteínas Arqueais , Ácido Aspártico Proteases , Methanomicrobiaceae , Presenilinas , Proteólise , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Methanomicrobiaceae/química , Methanomicrobiaceae/genética , Methanomicrobiaceae/metabolismo , Presenilinas/química , Presenilinas/genética , Presenilinas/metabolismo
5.
ACS Chem Biol ; 10(9): 2166-74, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26118406

RESUMO

Chemical details of intramembrane proteolysis remain elusive despite its prevalence throughout biology. We developed a FRET peptide assay for the intramembrane aspartyl protease (IAP) from Methanoculleus marisnigri JR1 in combination with quantitative mass spectrometry cleavage site analysis. IAP can hydrolyze the angiotensinogen sequence, a substrate for the soluble aspartyl protease renin, at a predominant cut site, His-Thr. Turnover is slow (min(-1) × 10(-3)), affinity and Michaelis constant (Km) values are in the low micromolar range, and both catalytic rates and cleavage sites are the same in detergent as reconstituted into bicelles. Three well-established, IAP-directed inhibitors were directly confirmed as competitive, albeit with modest inhibitor constant (Ki) values. Partial deletion of the first transmembrane helix results in a biophysically similar but less active enzyme than full-length IAP, indicating a catalytic role. Our study demonstrates previously unappreciated similarities with soluble aspartyl proteases, provides new biochemical features of IAP and inhibitors, and offers tools to study other intramembrane protease family members in molecular detail.


Assuntos
Ácido Aspártico Proteases/metabolismo , Methanomicrobiaceae/enzimologia , Peptídeos/metabolismo , Angiotensinogênio/química , Angiotensinogênio/metabolismo , Ácido Aspártico Proteases/antagonistas & inibidores , Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/genética , Inibidores Enzimáticos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Hidrólise/efeitos dos fármacos , Methanomicrobiaceae/química , Methanomicrobiaceae/genética , Methanomicrobiaceae/metabolismo , Modelos Moleculares , Peptídeos/química , Deleção de Sequência , Especificidade por Substrato
6.
J Inorg Biochem ; 121: 46-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23337786

RESUMO

An alkane hydroxylase from the marine organism Alcanivorax borkumensis (AbAlkB) was purified. The purified protein retained high activity in an assay with purified rubredoxin (AlkG), purified maize ferredoxin reductase, NADPH, and selected substrates. The reaction mechanism of the purified protein was probed using the radical clock substrates bicyclo[4.1.0]heptane (norcarane), bicyclo[3.1.0]hexane (bicyclohexane), methylphenylcyclopropane and deuterated and non-deuterated cyclohexane. The distribution of products from the radical clock substrates supports the hypothesis that purified AbAlkB hydroxylates substrates by forming a substrate radical. Experiments with deuterated cyclohexane indicate that the rate-determining step has a significant CH bond breaking character. The products formed from a number of differently shaped and sized substrates were characterized to determine the active site constraints of this AlkB. AbAlkB can catalyze the hydroxylation of a large number of aromatic compounds and linear and cyclic alkanes. It does not catalyze the hydroxylation of alkanes with a chain length longer than 15 carbons, nor does it hydroxylate sterically hindered C-H bonds.


Assuntos
Alcanivoraceae/enzimologia , Proteínas de Bactérias/química , Citocromo P-450 CYP4A/química , Rubredoxinas/química , Alcanivoraceae/química , Proteínas de Bactérias/isolamento & purificação , Biodegradação Ambiental , Compostos Bicíclicos com Pontes/química , Cicloexanos/química , Ciclopropanos/química , Citocromo P-450 CYP4A/isolamento & purificação , Radicais Livres/química , Hidroxilação , Modelos Moleculares , NADP/química , Oxirredução , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Rubredoxinas/isolamento & purificação , Especificidade por Substrato , Terpenos/química , Zea mays/química , Zea mays/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA