Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; : 1-27, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420580

RESUMO

INTRODUCTION: Scaffold hopping has emerged as a practical tactic to enrich the synthetic bank of small molecule antitumor agents. Specifically, it enables the chemist to refine the lead compound's pharmacodynamic, pharmacokinetic, and physiochemical properties. Scaffold hopping opens up fresh molecular territory beyond established patented chemical domains. AREA COVERED: The authors present the scaffold hopping-based drug design strategies for dual inhibitory antitumor structural templates in this review. Minor modifications, structure rigidification and simplification (ring-closing and opening), and complete structural overhauls were the strategies employed by the medicinal chemist to generate a library of bifunctional inhibitors. In addition, the review presents an overview of the computational methods of scaffold hopping (software and programs) and organopalladium catalysis leveraged for the synthesis of templates designed via scaffold hopping. EXPERT OPINION: The medicinal chemist has demonstrated remarkable prowess in furnishing dual inhibitory antitumor chemical architectures. Scaffold hopping-based drug design strategies have yielded a plethora of pharmacodynamically superior dual modulatory antitumor agents. An integrated approach involving computational advancements, synthetic methodology advancements, and conventional drug design strategies is required to increase the number of scaffold-hopping-assisted drug discovery campaigns.

2.
J Med Chem ; 67(19): 17207-17225, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39320444

RESUMO

Precedential evidence ascertaining the overexpression of LSD1 and HDACs in colorectal cancer spurred us to design a series of dual LSD1-HDAC inhibitors. Capitalizing on the modular nature of the three-component HDAC inhibitory model, tranylcypromine as a surface recognition motif was appended to zinc-binding motifs via diverse linkers. A compendium of hydroxamic acids was generated and evaluated for in vitro cytotoxicity against HCT-116 cells (human colorectal cancer cell lines). The most potent cell growth inhibitor 2 (GI50 = 0.495 µMm HCT-116 cells) shows promising anticancer effects by reducing colony formation and inducing cell cycle arrest in HCT-116 cells. It exhibits preferential inhibition of HDAC6, along with potent inhibition of LSD1 compared to standard inhibitors. Moreover, Compound 2 upregulates acetyl-tubulin, acetyl-histone H3, and H3K4me2, indicative of LSD1 and HDAC inhibition. In vivo, it demonstrates significant antitumor activity against colorectal cancer, better than irinotecan, and effectively inhibits growth in patient-derived CRC organoids.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Inibidores de Histona Desacetilases , Histona Desmetilases , Organoides , Humanos , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Animais , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Camundongos , Células HCT116 , Ensaios de Seleção de Medicamentos Antitumorais , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Camundongos Nus , Histona Desacetilases/metabolismo
3.
Eur J Med Chem ; 279: 116866, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39293244

RESUMO

Attempts to furnish antitumor structural templates that can prevent the occurrence of drug-induced hyperuricemia spurred us to generate xanthine oxidase inhibitor-based hydroxamic acids and anilides. Specifically, the design strategy involved the insertion of febuxostat (xanthine oxidase inhibitor) as a surface recognition part of the HDAC inhibitor pharmacophore model. Investigation outcomes revealed that hydroxamic acid 4 elicited remarkable antileukemic effects mediated via HDAC isoform inhibition. Delightfully, the adduct retained xanthine oxidase inhibitory activity, though xanthine oxidase inhibition was not the underlying mechanism of its cell growth inhibitory effects. Also, compound 4 demonstrated significant in-vivo anti-hyperuricemic (PO-induced hyperuricemia model) and antitumor activity in an HL-60 xenograft mice model. Compound 4 was conjugated with poly (ethylene glycol) poly(aspartic acid) block copolymer to furnish pH-responsive nanoparticles (NPs) in pursuit of circumventing its cytotoxicity towards the normal cell lines. SEM analysis revealed that NPs had uniform size distributions, while TEM analysis ascertained the spherical shape of NPs, indicating their ability to undergo self-assembly. HDAC inhibitor 4 was liberated from the matrix due to the polymeric nanoformulation's pH-responsiveness, and the NPs demonstrated selective cancer cell targeting ability.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Febuxostat , Ácidos Hidroxâmicos , Nanopartículas , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Concentração de Íons de Hidrogênio , Febuxostat/farmacologia , Febuxostat/química , Camundongos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Nanopartículas/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Relação Dose-Resposta a Droga , Células HL-60 , Masculino , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente
4.
Expert Opin Investig Drugs ; 33(9): 897-914, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096234

RESUMO

INTRODUCTION: Spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, has emerged as a vital component in the complex symphony of cancer cell survival and division. SYK activation (constitutive) is documented in various B-cell malignancies, and its inhibition induces programmed cell death. In some instances, it also acts as a tumor suppressor. AREAS COVERED: Involvement of the SYK in the cancer growth, specifically in the progression of chronic lymphocytic leukemia (CLL), diffuse large B cell lymphomas (DLBCLs), acute myeloid leukemia (AML), and multiple myeloma (MM) is discussed. Therapeutic strategies to target SYK in cancer, including investigational SYK inhibitors, combinations of SYK inhibitors with other drugs targeting therapeutically relevant targets, and recent advancements in constructing new structural assemblages as SYK inhibitors, are also covered. EXPERT OPINION: The SYK inhibitor field is currently marred by the poor translation rate of SYK inhibitors from preclinical to clinical studies. Also, dose-limited toxicities associated with the applications of SYK inhibitors have been evidenced. Thus, the development of new SYK inhibitory structural templates is in the need of the hour. To accomplish the aforementioned, interdisciplinary teams should incessantly invest efforts to expand the size of the armory of SYK inhibitors.


Assuntos
Antineoplásicos , Terapia de Alvo Molecular , Neoplasias , Inibidores de Proteínas Quinases , Quinase Syk , Humanos , Quinase Syk/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/efeitos adversos , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/enzimologia , Desenvolvimento de Medicamentos , Progressão da Doença
5.
Eur J Med Chem ; 273: 116507, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776806

RESUMO

Careful recruitment of the components of the HDAC inhibitory template culminated in veliparib-based anilide 8 that elicited remarkable cell growth inhibitory effects against HL-60 cell lines mediated via dual modulation of PARP [(IC50 (PARP1) = 0.02 nM) and IC50 (PARP2) = 1 nM)] and HDACs (IC50 value = 0.05, 0.147 and 0.393 µM (HDAC1, 2 and 3). Compound 8 downregulated the expression levels of signatory biomarkers of PARP and HDAC inhibition. Also, compound 8 arrested the cell cycle at the G0/G1 phase and induced autophagy. Polymer nanoformulation (mPEG-PCl copolymeric micelles loaded with compound 8) was prepared by the nanoprecipitation technique. The mPEG-PCL diblock copolymer was prepared by ring-opening polymerization method using stannous octoate as a catalyst. The morphology of the compound 8@mPEG-PCL was examined using TEM and the substance was determined to be monodispersed, spherical in form, and had an average diameter of 138 nm. The polymer nanoformulation manifested pH-sensitive behaviour as a greater release of compound 8 was observed at 6.2 pH as compared to 7.4 pH mimicking physiological settings. The aforementioned findings indicate that the acidic pH of the tumour microenvironment might stimulate the nanomedicine release which in turn can attenuate the off-target effects precedentially claimed to be associated with HDAC inhibitors.


Assuntos
Antineoplásicos , Benzimidazóis , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Polietilenoglicóis , Humanos , Concentração de Íons de Hidrogênio , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Proliferação de Células/efeitos dos fármacos , Polietilenoglicóis/química , Células HL-60 , Nanopartículas/química , Estrutura Molecular , Micelas , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Poliésteres/química , Poliésteres/farmacologia , Poliésteres/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química
6.
Eur J Med Chem ; 272: 116472, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728867

RESUMO

"A journey of mixed emotions" is a quote that best describes the progress chart of vascular endothelial growth factor receptor (VEGFR) inhibitors as cancer therapeutics in the last decade. Exhilarated with the Food and Drug Administration (FDA) approvals of numerous VEGFR inhibitors coupled with the annoyance of encountering the complications associated with their use, drug discovery enthusiasts are on their toes with an unswerving determination to enhance the rate of translation of VEGFR inhibitors from preclinical to clinical stage. The recently crafted armory of VEGFR inhibitors is a testament to their growing dominance over other antiangiogenic therapies for cancer treatment. This review perspicuously underscores the earnest attempts of the researchers to extract the antiproliferative potential of VEGFR inhibitors through the design of mechanistically diverse structural assemblages. Moreover, this review encompasses sections on structural/molecular properties and physiological functions of VEGFR, FDA-approved VEGFR inhibitors, and hurdles restricting the activity range/clinical applicability of VEGFR targeting antitumor agents. In addition, tactics to overcome the limitations of VEGFR inhibitors are discussed. A clear-cut viewpoint transmitted through this compilation can provide practical directions to push the cart of VEGFR inhibitors to advanced-stage clinical investigations in diverse malignancies.


Assuntos
Antineoplásicos , Neoplasias , Inibidores de Proteínas Quinases , Receptores de Fatores de Crescimento do Endotélio Vascular , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Estrutura Molecular
7.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311053

RESUMO

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Assuntos
Androstenos , Neoplasias Encefálicas , Glioblastoma , Esteroide 17-alfa-Hidroxilase , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Desacetilase 6 de Histona/genética , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Estresse Oxidativo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Med Chem ; 67(4): 2963-2985, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38285511

RESUMO

Structural analysis of tazemetostat, an FDA-approved EZH2 inhibitor, led us to pinpoint a suitable site for appendage with a pharmacophoric fragment of second-generation HSP90 inhibitors. Resultantly, a magnificent dual EZH2/HSP90 inhibitor was pinpointed that exerted striking cell growth inhibitory efficacy against TMZ-resistant Glioblastoma (GBM) cell lines. Exhaustive explorations of chemical probe 7 led to several revelations such as (i) compound 7 increased apoptosis/necrosis-related gene expression, whereas decreased M phase/kinetochore/spindle-related gene expression as well as CENPs protein expression in Pt3R cells; (ii) dual inhibitor 7 induced cell cycle arrest at the M phase; (iii) compound 7 suppressed reactive oxygen species (ROS) catabolism pathway, causing the death of TMZ-resistant GBM cells; and (iv) compound 7 elicited substantial in vivo anti-GBM efficacy in experimental mice xenografted with TMZ-resistant Pt3R cells. Collectively, the study results confirm the potential of dual EZH2-HSP90 inhibitor 7 as a tractable anti-GBM agent.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Temozolomida/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Glioblastoma/metabolismo , Inibidores Enzimáticos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico
9.
Curr Drug Targets ; 24(15): 1184-1208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946353

RESUMO

Proteolysis Targeting Chimeras (PROTACs) technology has emerged as a promising strategy for the treatment of undruggable therapeutic targets. Researchers have invested a great effort in developing druggable PROTACs; however, the problems associated with PROTACs, including poor solubility, metabolic stability, cell permeability, and pharmacokinetic profile, restrict their clinical utility. Thus, there is a pressing need to expand the size of the armory of PROTACs which will escalate the chances of pinpointing new PROTACs with optimum pharmacokinetic and pharmacodynamics properties. N- heterocycle is a class of organic frameworks that have been widely explored to construct new and novel PROTACs. This review provides an overview of recent efforts of medicinal chemists to develop N-heterocycle-based PROTACs as effective cancer therapeutics. Specifically, the recent endeavors centred on the discovery of PROTACs have been delved into various classes based on the E3 ligase they target (MDM2, IAP, CRBN, and other E3 ligases). Mechanistic insights revealed during the biological assessment of recently furnished Nheterocyclic- based PROTACs constructed via the utilization of ligands for various E3 ligases have been discussed.


Assuntos
Quimera de Direcionamento de Proteólise , Ubiquitina-Proteína Ligases , Humanos , Permeabilidade , Solubilidade , Ligantes
10.
J Enzyme Inhib Med Chem ; 38(1): 2276665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919954

RESUMO

Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.


Assuntos
Antineoplásicos , Neoplasias do Endométrio , Flavonas , Humanos , Feminino , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Flavonas/farmacologia , Benzopiranos , Proliferação de Células
11.
Bioorg Chem ; 141: 106893, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783100

RESUMO

Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Descoberta de Drogas , Desenho de Fármacos
12.
Expert Opin Drug Discov ; 18(10): 1169-1193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525475

RESUMO

INTRODUCTION: PARP inhibitors block the DNA-repairing mechanism of PARP and represent a promising class of anti-cancer therapy. The last decade has witnessed FDA approvals of several PARP inhibitors, with some undergoing advanced-stage clinical investigation. Medicinal chemists have invested much effort to expand the structure pool of PARP inhibitors. Issues associated with the use of PARP inhibitors that make their standing disconcerting in the pharmaceutical sector have been addressed via the design of new structural assemblages. AREA COVERED: In this review, the authors present a detailed account of the medicinal chemistry campaigns conducted in the recent past for the construction of PARP1/PARP2 inhibitors, PARP1 biased inhibitors, and PARP targeting bifunctional inhibitors as well as PARP targeting degraders (PROTACs). Limitations associated with FDA-approved PARP inhibitors and strategies to outwit the limitations are also discussed. EXPERT OPINION: The PARP inhibitory field has been rejuvenated with numerous tractable entries in the last decade. With numerous magic bullets in hand coupled with unfolded tactics to outwit the notoriety of cancer cells developing resistance toward PARP inhibitors, the dominance of PARP inhibitors as a sagacious option of targeted therapy is highly likely to be witnessed soon.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Reparo do DNA , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
13.
Eur J Med Chem ; 248: 115054, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36630883

RESUMO

The pursuit of activating the HDAC inhibitory template towards additional mechanisms spurred us to design dual modulators (Sig-1R agonist - HDAC inhibitor) via utilization of the core structural unit of donepezil (an FDA-approved anti-Alzheimer's agent) as a surface recognition part. Literature precedents coupled with our experience rendered us with several insights that led to the inclusion of chemically diverse linkers and hydroxamic acid (zinc-binding motif) as the other components of HDAC inhibitory pharmacophore. With this envisionment and clarity, donepezil-based HDAC inhibitory adducts were furnished and exhaustively explored for their anti-GBM efficacy. Resultantly, a magnificently potent HDAC inhibitor 10 [IC50 (HDAC6) = 2.7 nM, IC50 (HDAC2) = 0.71 µM] was pinpointed that was endowed with the ability to: i) exert cell growth inhibitory effects against Human U87MG GBM cells ii) cause death in TMZ-resistant GBM cells iii) induce subG1 arrest in GBM cells iv) prolong the survival of TMZ-resistant U87MG inoculated orthotopic mice (in-vivo studies) v) induce GBM cell apoptosis via binding to Sig-1R. Collectively, the results led to the identification of compound 10 as a tractable anti-GBM agent that deserves detailed investigation for the accomplishment of its candidature as a GBM therapeutic.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Donepezila/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Proliferação de Células
14.
J Adv Res ; 46: 159-171, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35752438

RESUMO

INTRODUCTION: The tumor microenvironment is mainly flooded with immunosuppressive cells and inhibitory cytokines, resulting in the inability of effective immune cells to infiltrate and recognize tumors and even the loss of anti-cancer ability. OBJECTIVES: We propose a novel HDAC6/HSP90 dual inhibitory strategy as well as a chemoimmunotherapeutic agent that does not only kill tumor cells but also destroys the tumor microenvironment and enhances anti-cancer immunity. METHODS: A hybrid scaffold construction approach was leveraged to furnish a series of rationally designed resorcinol-based hydroxamates as dual selective HDAC6/HSP90 inhibitors. The drug design campaign commenced with a fragment recruitment process to pinpoint validated structural units to inhibit HDAC6 and HSP90, followed by their installation in flexible HDAC inhibitory templates via an efficient and facile multistep synthetic route. Subsequent evaluations identified a strikingly potent selective HDAC6/HSP90 dual inhibitor (compound 17) via molecular and biological analysis in vitro and in vivo. RESULTS: Compound 17 exhibited not only direct cytotoxicity to cancer cells but also downregulated immune checkpoints (PD-L1 and IDO) expression in tumors via the inhibition of STAT1 pathway and degradation of oncogene proteins (Src, AKT, Rb, and FAK), leading to in vivo tumor growth inhibition. These multiple effects enabled the effector T cells to largely infiltrate into the tumor region and release granzyme B to kill cancer cells. In addition, compound 17 also decreased TGF-ß secretion from normal cells, resulting in the systemic reduction of immunosuppressive regulatory T cells. Delightfully, a cocktail treatment of compound 17 and anti-PD-1 antibodies demonstrated synergistic efficacy to eliminate solid tumors with 83.9% of tumor growth inhibition. CONCLUSION: In summary, the impressive activity profile of compound 17, as an effective anticancer agent and a potential immunosensitizer, forecasts the application of HDAC6/HSP90 dual inhibitory strategy to overcome the immunosuppressive tumor microenvironment.


Assuntos
Antineoplásicos , Microambiente Tumoral , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Proteínas de Choque Térmico HSP90/metabolismo
15.
J Biomed Sci ; 29(1): 65, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36064696

RESUMO

Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Vacinas , COVID-19/prevenção & controle , Humanos , Pandemias , Peptídeos , SARS-CoV-2
16.
J Ayurveda Integr Med ; 13(3): 100616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35933940

RESUMO

Grewia asiatica Linn. is a well-known plant for its nutritional and therapeutic attributes. It has been mentioned in ancient Indian literature as Rasayana due to its stimulant and tonic effects. Thus, present investigation was carried out to evaluate the antiepileptic and anxiolytic action of G. asiatica Linn. leaves using animal models. Methanol extract at dose levels of 100 and 200 mg/kg was capable of providing protection against both pentylenetetrazole and maximal electroshock induced seizures in mice. Extract also showed significant anxiolytic activity in elevated plus maze, light/dark box and mirror chamber mice models at same dose levels. Results of this study indicated that the methanol extract of leaves of G. asiatica plant possess significant antiepileptic and anxiolytic effect.

17.
J Med Chem ; 65(13): 8596-8685, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35786935

RESUMO

Glioblastoma (GBM) is a highly malignant brain tumor characterized by a heterogeneous population of genetically unstable and highly infiltrative cells that are resistant to chemotherapy. Although substantial efforts have been invested in the field of anti-GBM drug discovery in the past decade, success has primarily been confined to the preclinical level, and clinical studies have often been hampered due to efficacy-, selectivity-, or physicochemical property-related issues. Thus, expansion of the list of molecular targets coupled with a pragmatic design of new small-molecule inhibitors with central nervous system (CNS)-penetrating ability is required to steer the wheels of anti-GBM drug discovery endeavors. This Perspective presents various aspects of drug discovery (challenges in GBM drug discovery and delivery, therapeutic targets, and agents under clinical investigation). The comprehensively covered sections include the recent medicinal chemistry campaigns embarked upon to validate the potential of numerous enzymes/proteins/receptors as therapeutic targets in GBM.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Descoberta de Drogas , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos
18.
Eur J Med Chem ; 240: 114602, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35858522

RESUMO

A fragment recruitment process was conducted to pinpoint a suitable fragment for installation in the HDAC inhibitory template to furnish agents endowed with the potential to treat lung cancer. Resultantly, Ring C expanded deoxyvasicinone was selected as an appropriate surface recognition part that was accommodated in the HDAC three-component model. Delightfully, fused quinazolinone 6 demonstrating a magnificent anticancer profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80-0.96 µM) was identified. Results of the mechanistic studies confirmed that the cell growth inhibitory effects of compound 6 stems for HDAC6 (IC50 = 12.9 nM), HDAC1 (IC50 = 49.9 nM) and HDAC3 inhibition (IC50 = 68.5 nM), respectively. Compound 6 also suppressed the colony formation ability of A549 cells, induced apoptosis, and increased autophagic flux. Key interactions of HDAC inhibitor 6 within the active site of HDAC isoforms were figured out through molecular modeling studies. Furthermore, a pH-responsive nanocarrier (Hyaluronic acid - fused quinazolinone 6 nanoparticles) was designed and assessed using a dialysis bag approach under both normal and acidic circumstances that confirmed the pH-sensitive nature of NPs. Delightfully, the nanoparticles demonstrated selective cell viability reduction potential towards the lung cancer cell lines (A549 lung cancer cell lines) and were found to be largely devoid of cell growth inhibitory effects under normal settings (L929, mouse fibroblast cells).


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Histona Desacetilases/química , Concentração de Íons de Hidrogênio , Neoplasias Pulmonares/metabolismo , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Quinazolinas , Quinazolinonas/administração & dosagem , Quinazolinonas/química , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
19.
Anticancer Agents Med Chem ; 22(15): 2662-2670, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379129

RESUMO

Protein kinases are amongst the most focused enzymes in the current century to design, synthesize and formulate drugs that ought to be effective in the treatment of various disordered and diseased states involving either overexpression or deficiency situations. The ATP pocket on the kinases is the active binding site for most of the kinase inhibitors. However, the kinase mutations prevent the binding of kinase inhibitors to the ATP pocket. The enzyme becomes inactive even in the mutated state when the switch pocket site on the enzyme is occupied by switch pocket inhibitors. This review comprises detailed information regarding various classical protein kinases and switch pocket kinase inhibitors with their mechanism of action so that new molecules can be designed to encounter mutations in the kinase enzyme.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Trifosfato de Adenosina/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Humanos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Proteínas Quinases/metabolismo
20.
Mini Rev Med Chem ; 22(15): 1977-2011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176978

RESUMO

Epigenetic mutations like aberrant DNA methylation, histone modifications, or RNA silencing are found in a number of human diseases. This review article discusses the epigenetic mechanisms involved in neurodegenerative disorders, cardiovascular disorders, auto-immune disorders and genomic imprinting disorders. In addition, emerging epigenetic therapeutic strategies for the treatment of such disorders are presented. Medicinal chemistry campaigns highlighting the efforts of the chemists invested towards the rational design of small molecule inhibitors have also been included. Pleasingly, several classes of epigenetic inhibitors, DNMT, HDAC, BET, HAT, and HMT inhibitors, along with RNA based therapies, have exhibited the potential to emerge as therapeutics in the longer run. It is quite hopeful that epigenetic modulator-based therapies will advance to clinical stage investigations by leaps and bounds.


Assuntos
Doenças Cardiovasculares , Doenças Neurodegenerativas , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Metilação de DNA , Epigênese Genética , Coração , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA