Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 19(2): 187-194, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115715

RESUMO

Single-guide RNAs can target exogenous CRISPR-Cas proteins to unique DNA locations, enabling genetic tools that are efficient, specific and scalable. Here we show that short synthetic guide Piwi-interacting RNAs (piRNAs) (21-nucleotide sg-piRNAs) expressed from extrachromosomal transgenes can, analogously, reprogram the endogenous piRNA pathway for gene-specific silencing in the hermaphrodite germline, sperm and embryos of Caenorhabditis elegans. piRNA-mediated interference ('piRNAi') is more efficient than RNAi and can be multiplexed, and auxin-mediated degradation of the piRNA-specific Argonaute PRG-1 allows conditional gene silencing. Target-specific silencing results in decreased messenger RNA levels, amplification of secondary small interfering RNAs and repressive chromatin modifications. Short (300 base pairs) piRNAi transgenes amplified from arrayed oligonucleotide pools also induce silencing, potentially making piRNAi highly scalable. We show that piRNAi can induce transgenerational epigenetic silencing of two endogenous genes (him-5 and him-8). Silencing is inherited for four to six generations after target-specific sg-piRNAs are lost, whereas depleting PRG-1 leads to essentially permanent epigenetic silencing.


Assuntos
Animais Geneticamente Modificados/genética , Caenorhabditis elegans/genética , Inativação Gênica , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/genética , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Embrião não Mamífero , Epigênese Genética , Feminino , Masculino
2.
Cell Rep ; 25(8): 2273-2284.e3, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463021

RESUMO

The dynamic process by which nuclear RNAi engages a transcriptionally active target, before the repressive state is stably established, remains largely a mystery. Here, we found that the onset of exogenous dsRNA-induced nuclear RNAi in C. elegans is a transgenerational process, and it requires a putative histone methyltransferase (HMT), SET-32. By developing a CRISPR-based genetic approach, we found that silencing establishment at the endogenous targets of germline nuclear RNAi also requires SET-32. Although SET-32 and two H3K9 HMTs, MET-2 and SET-25, are dispensable for the maintenance of silencing, they do contribute to transcriptional repression in mutants that lack the germline nuclear Argonaute protein HRDE-1, suggesting a conditional role of heterochromatin in the maintenance phase. Our study indicates that (1) establishment and maintenance of siRNA-guided transcriptional repression are two distinct processes with different genetic requirements and (2) the rate-limiting step of the establishment phase is a transgenerational, chromatin-based process.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Epigênese Genética , Heterocromatina/metabolismo , Histona Metiltransferases/fisiologia , Interferência de RNA , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Histona Metiltransferases/genética , Histonas/metabolismo , Lisina/metabolismo , Mutação/genética , RNA de Cadeia Dupla/metabolismo , Transcrição Gênica
3.
Development ; 145(20)2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30254142

RESUMO

Nuclear RNA interference provides a unique approach to the study of RNA-mediated transgenerational epigenetic inheritance. A paradox in the field is that expression of target loci is necessary for the initiation and maintenance of their silencing. How expression and repression are coordinated during animal development is poorly understood. To resolve this gap, we took imaging, deep-sequencing and genetic approaches towards delineating the developmental regulation and subcellular localization of RNA transcripts of two representative endogenous targets, the LTR retrotransposons Cer3 and Cer8. By examining wild-type worms and a collection of mutant strains, we found that the expression and silencing cycle of Cer3 and Cer8 is coupled with embryonic and germline development. Strikingly, endogenous targets exhibit a hallmark of nuclear enrichment of their RNA transcripts. In addition, germline and somatic repressions of Cer3 have different genetic requirements for three heterochromatin enzymes, MET-2, SET-25 and SET-32, in conjunction with the nuclear Argonaute protein HRDE-1. These results provide the first comprehensive cellular and developmental characterization of nuclear RNAi activities throughout the animal reproductive cycle.


Assuntos
Caenorhabditis elegans/genética , Interferência de RNA , Retroelementos/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Resposta ao Choque Térmico/genética , Histonas/metabolismo , Lisina/metabolismo , Mitose , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura , Fatores de Tempo , Transcrição Gênica
4.
Dev Biol ; 436(2): 75-83, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477340

RESUMO

Successful fertilization requires that sperm are activated prior to contacting an oocyte. In C. elegans, this activation process, called spermiogenesis, transforms round immobile spermatids into motile, fertilization-competent spermatozoa. We describe the phenotypic and genetic characterization of spe-43, a new component of the spe-8 pathway, which is required for spermiogenesis in hermaphrodites; spe-43 hermaphrodites are self-sterile, while spe-43 males show wild-type fertility. When exposed to Pronase to activate sperm in vitro, spe-43 spermatids form long rigid spikes radiating outward from the cell periphery instead of forming a motile pseudopod, indicating that spermiogenesis initiates but is not completed. Using a combination of recombinant and deletion mapping and whole genome sequencing, we identified F09E8.1 as spe-43. SPE-43 is predicted to exist in two isoforms; one isoform appears to be a single-pass transmembrane protein while the other is predicted to be a secreted protein. SPE-43 can bind to other known sperm proteins, including SPE-4 and SPE-29, which are known to impact spermiogenesis. In summary, we have identified a membrane protein that is present in C. elegans sperm and is required for sperm activation via the hermaphrodite activation signal.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Espermatogênese/genética , Espermatozoides/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fertilidade/genética , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogênese/fisiologia , Espermatozoides/fisiologia , Sequenciamento Completo do Genoma
5.
Artigo em Inglês | MEDLINE | ID: mdl-28228846

RESUMO

BACKGROUND: Germline nuclear RNAi in C. elegans is a transgenerational gene-silencing pathway that leads to H3K9 trimethylation (H3K9me3) and transcriptional silencing at the target genes. H3K9me3 induced by either exogenous double-stranded RNA (dsRNA) or endogenous siRNA (endo-siRNA) is highly specific to the target loci and transgenerationally heritable. Despite these features, the role of H3K9me3 in siRNA-mediated transcriptional silencing and inheritance of the silencing state at native target genes is unclear. In this study, we took combined genetic and whole-genome approaches to address this question. RESULTS: Here we demonstrate that siRNA-mediated H3K9me3 requires combined activities of three H3K9 histone methyltransferases: MET-2, SET-25, and SET-32. set-32 single, met-2 set-25 double, and met-2 set-25;set-32 triple mutant adult animals all exhibit prominent reductions in H3K9me3 throughout the genome, with met-2 set-25;set-32 mutant worms losing all detectable H3K9me3 signals. Surprisingly, loss of high-magnitude H3K9me3 at the native nuclear RNAi targets has no effect on the transcriptional silencing state. In addition, the exogenous dsRNA-induced transcriptional silencing and heritable RNAi at oma-1, a well-established nuclear RNAi reporter gene, are completely resistant to the loss of H3K9me3. CONCLUSIONS: Nuclear RNAi-mediated H3K9me3 in C. elegans requires multiple histone methyltransferases, including MET-2, SET-25, and SET-32. H3K9me3 is not essential for dsRNA-induced heritable RNAi or the maintenance of endo-siRNA-mediated transcriptional silencing in C. elegans. We propose that siRNA-mediated transcriptional silencing in C. elegans can be maintained by an H3K9me3-independent mechanism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Histonas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Imunoprecipitação da Cromatina , Genoma , Instabilidade Genômica , Células Germinativas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Metilação , Microscopia de Fluorescência , Mutagênese , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transcrição Gênica
6.
Artigo em Inglês | MEDLINE | ID: mdl-26779286

RESUMO

BACKGROUND: Environmental stress-induced transgenerational epigenetic effects have been observed in various model organisms and human. The capacity and mechanism of such phenomena are poorly understood. In C. elegans, siRNA mediates transgenerational gene silencing through the germline nuclear RNAi pathway. This pathway is also required to maintain the germline immortality when C. elegans is under heat stress. However, the underlying molecular mechanism is unknown. In this study, we investigated the impact of heat stress on chromatin, transcription, and siRNAs at the whole-genome level, and whether any of the heat-induced effects is transgenerationally heritable in either the wild-type or the germline nuclear RNAi mutant animals. RESULTS: We performed 12-generation temperature-shift experiments using the wild-type C. elegans and a mutant strain that lacks the germline-specific nuclear Argonaute protein HRDE-1/WAGO-9. By examining the mRNA, small RNA, RNA polymerase II, and H3K9 trimethylation profiles at the whole-genome level, we revealed an epigenetic role of HRDE-1 in repressing heat stress-induced transcriptional activation of over 280 genes. Many of these genes are in or near LTR (long-terminal repeat) retrotransposons. Strikingly, for some of these genes, the heat stress-induced transcriptional activation in the hrde-1 mutant intensifies in the late generations under the heat stress and is heritable for at least two generations after the mutant animals are shifted back to lower temperature. hrde-1 mutation also leads to siRNA expression changes of many genes. This effect on siRNA is dependent on both the temperature and generation. CONCLUSIONS: Our study demonstrated that a large number of the endogenous targets of the germline nuclear RNAi pathway in C. elegans are sensitive to heat-induced transcriptional activation. This effect at certain genomic loci including LTR retrotransposons is transgenerational. Germline nuclear RNAi antagonizes this temperature effect at the transcriptional level and therefore may play a key role in heat stress response in C. elegans.

7.
BMC Genomics ; 15: 1157, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25534009

RESUMO

BACKGROUND: Small RNA-guided transcriptional silencing (nuclear RNAi) is fundamental to genome integrity and epigenetic inheritance. Despite recent progress in identifying the capability and genetic requirements for nuclear RNAi in Caenorhabditis elegans, the natural targets and cellular functions of nuclear RNAi remain elusive. METHODS: To resolve this gap, we coordinately examined the genome-wide profiles of transcription, histone H3 lysine 9 methylation (H3K9me) and endogenous siRNAs of a germline nuclear Argonaute (hrde-1/wago-9) mutant and identified regions on which transcription activity is markedly increased and/or H3K9me level is markedly decreased relative to wild type animals. RESULTS: Our data revealed a distinct set of native targets of germline nuclear RNAi, with the H3K9me response exhibiting both overlapping and non-overlapping distribution with the transcriptional silencing response. Interestingly LTR retrotransposons, but not DNA transposons, are highly enriched in the targets of germline nuclear RNAi. The genomic distribution of the native targets is highly constrained, with >99% of the identified targets present in five autosomes but not in the sex chromosome. By contrast, HRDE-1-associated small RNAs correspond to all chromosomes. In addition, we found that the piRNA pathway is not required for germline nuclear RNAi activity on native targets. CONCLUSION: Germline nuclear RNAi in C. elegans is required to silence retrotransposons but not DNA transposon. Transcriptional silencing and H3K9me can occur independently of each other on the native targets of nuclear RNAi in C. elegans. Our results rule out a simple model in which nuclear Argonaute protein-associated-small RNAs are sufficient to trigger germline nuclear RNAi responses. In addition, the piRNA pathway and germline nuclear RNAi are specialized to target different types of foreign genetic elements for genome surveillance in C. elegans.


Assuntos
Caenorhabditis elegans/genética , Histonas/química , Histonas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transcrição Gênica/genética , Animais , Proteínas Argonautas/deficiência , Proteínas Argonautas/genética , Caenorhabditis elegans/citologia , Cromatina/genética , Perfilação da Expressão Gênica , Lisina/metabolismo , Metilação , RNA Polimerase II/metabolismo , Retroelementos/genética
8.
PLoS Genet ; 9(8): e1003737, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24009527

RESUMO

Caloric/dietary restriction (CR/DR) can promote longevity and protect against age-associated disease across species. The molecular mechanisms coordinating food intake with health-promoting metabolism are thus of significant medical interest. We report that conserved Caenorhabditis elegans microRNA-80 (mir-80) is a major regulator of the DR state. mir-80 deletion confers system-wide healthy aging, including maintained cardiac-like and skeletal muscle-like function at advanced age, reduced accumulation of lipofuscin, and extended lifespan, coincident with induction of physiological features of DR. mir-80 expression is generally high under ad lib feeding and low under food limitation, with most striking food-sensitive expression changes in posterior intestine. The acetyltransferase transcription co-factor cbp-1 and interacting transcription factors daf-16/FOXO and heat shock factor-1 hsf-1 are essential for mir-80(Δ) benefits. Candidate miR-80 target sequences within the cbp-1 transcript may confer food-dependent regulation. Under food limitation, lowered miR-80 levels directly or indirectly increase CBP-1 protein levels to engage metabolic loops that promote DR.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Restrição Calórica , Longevidade/genética , MicroRNAs/genética , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Deleção de Sequência , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA