Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069223

RESUMO

Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.


Assuntos
Reparo do DNA , Replicação do DNA , Humanos , Dano ao DNA , Endonucleases/metabolismo , Instabilidade Genômica , DNA , Nucleotídeos
2.
Nucleic Acids Res ; 51(22): 12224-12241, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953292

RESUMO

BRCA1-deficient cells have increased IRE1 RNase, which degrades multiple microRNAs. Reconstituting expression of one of these, miR-4638-5p, resulted in synthetic lethality in BRCA1-deficient cancer cells. We found that miR-4638-5p represses expression of TATDN2, a poorly characterized member of the TATD nuclease family. We discovered that human TATDN2 has RNA 3' exonuclease and endonuclease activity on double-stranded hairpin RNA structures. Given the cleavage of hairpin RNA by TATDN2, and that BRCA1-deficient cells have difficulty resolving R-loops, we tested whether TATDN2 could resolve R-loops. Using in vitro biochemical reconstitution assays, we found TATDN2 bound to R-loops and degraded the RNA strand but not DNA of multiple forms of R-loops in vitro in a Mg2+-dependent manner. Mutations in amino acids E593 and E705 predicted by Alphafold-2 to chelate an essential Mg2+ cation completely abrogated this R-loop resolution activity. Depleting TATDN2 increased cellular R-loops, DNA damage and chromosomal instability. Loss of TATDN2 resulted in poor replication fork progression in the presence of increased R-loops. Significantly, we found that TATDN2 is essential for survival of BRCA1-deficient cancer cells, but much less so for cognate BRCA1-repleted cancer cells. Thus, we propose that TATDN2 is a novel target for therapy of BRCA1-deficient cancers.


Assuntos
Neoplasias , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Replicação do DNA , Instabilidade Genômica , Magnésio , MicroRNAs/genética , Neoplasias/genética , Estruturas R-Loop
3.
NAR Cancer ; 5(1): zcac044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683914

RESUMO

Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H2O2 and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.

4.
Int J Radiat Biol ; 99(6): 903-914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34283012

RESUMO

PURPOSE: Ionizing radiation induces a vast array of DNA lesions including base damage, and single- and double-strand breaks (SSB, DSB). DSBs are among the most cytotoxic lesions, and mis-repair causes small- and large-scale genome alterations that can contribute to carcinogenesis. Indeed, ionizing radiation is a 'complete' carcinogen. DSBs arise immediately after irradiation, termed 'frank DSBs,' as well as several hours later in a replication-dependent manner, termed 'secondary' or 'replication-dependent DSBs. DSBs resulting from replication fork collapse are single-ended and thus pose a distinct problem from two-ended, frank DSBs. DSBs are repaired by error-prone nonhomologous end-joining (NHEJ), or generally error-free homologous recombination (HR), each with sub-pathways. Clarifying how these pathways operate in normal and tumor cells is critical to increasing tumor control and minimizing side effects during radiotherapy. CONCLUSIONS: The choice between NHEJ and HR is regulated during the cell cycle and by other factors. DSB repair pathways are major contributors to cell survival after ionizing radiation, including tumor-resistance to radiotherapy. Several nucleases are important for HR-mediated repair of replication-dependent DSBs and thus replication fork restart. These include three structure-specific nucleases, the 3' MUS81 nuclease, and two 5' nucleases, EEPD1 and Metnase, as well as three end-resection nucleases, MRE11, EXO1, and DNA2. The three structure-specific nucleases evolved at very different times, suggesting incremental acceleration of replication fork restart to limit toxic HR intermediates and genome instability as genomes increased in size during evolution, including the gain of large numbers of HR-prone repetitive elements. Ionizing radiation also induces delayed effects, observed days to weeks after exposure, including delayed cell death and delayed HR. In this review we highlight the roles of HR in cellular responses to ionizing radiation, and discuss the importance of HR as an exploitable target for cancer radiotherapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Homóloga , Ciclo Celular , Radiação Ionizante , Dano ao DNA
5.
DNA (Basel) ; 2(1): 68-85, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36203968

RESUMO

DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.

6.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897913

RESUMO

Proliferating cells regularly experience replication stress caused by spontaneous DNA damage that results from endogenous reactive oxygen species (ROS), DNA sequences that can assume secondary and tertiary structures, and collisions between opposing transcription and replication machineries. Cancer cells face additional replication stress, including oncogenic stress that results from the dysregulation of fork progression and origin firing, and from DNA damage induced by radiotherapy and most cancer chemotherapeutic agents. Cells respond to such stress by activating a complex network of sensor, signaling and effector pathways that protect genome integrity. These responses include slowing or stopping active replication forks, protecting stalled replication forks from collapse, preventing late origin replication firing, stimulating DNA repair pathways that promote the repair and restart of stalled or collapsed replication forks, and activating dormant origins to rescue adjacent stressed forks. Currently, most cancer patients are treated with genotoxic chemotherapeutics and/or ionizing radiation, and cancer cells can gain resistance to the resulting replication stress by activating pro-survival replication stress pathways. Thus, there has been substantial effort to develop small molecule inhibitors of key replication stress proteins to enhance tumor cell killing by these agents. Replication stress targets include ATR, the master kinase that regulates both normal replication and replication stress responses; the downstream signaling kinase Chk1; nucleases that process stressed replication forks (MUS81, EEPD1, Metnase); the homologous recombination catalyst RAD51; and other factors including ATM, DNA-PKcs, and PARP1. This review provides an overview of replication stress response pathways and discusses recent pre-clinical studies and clinical trials aimed at improving cancer therapy by targeting replication stress response factors.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Endodesoxirribonucleases/metabolismo , Recombinação Homóloga , Humanos
7.
Am J Cancer Res ; 12(2): 562-573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261787

RESUMO

In this study, we aimed to investigate how homologous recombinant (HR)-related genomic instability is involved in ionizing radiation (IR)-induced thymic lymphoma in mice. We divided five-week-old Rosa26 Direct Repeat-GFP (RaDR-GFP) transgenic mice into non-IR control and IR groups and exposed the mice in the IR group to a 7.2 Gy dose of γ-rays, delivered in 1.8 Gy fractions, once a week for four weeks. We then estimated mouse survival and recorded their body, thymus, and spleen weights. The frequency of HR events in the chromosomes of the thymus, bone marrow, and spleen cells and the phenotype of thymic lymphoma cells were analyzed using fluorescence-activated cell sorting (FACS). We found that most mice in the IR group developed thymic lymphoma, their survival rate decreasing to 20% after 180 days of IR exposure, whereas no mice died in the non-IR control group until day 400. The thymus and spleen weighed significantly more in the IR-4-month group than that in the non-IR group; however, we observed no significant differences between the body weights of the control and IR mice. FACS analysis indicated that the frequency of HR events significantly increased at two and four months after the last IR dose in the bone marrow and thymus cells, but not in the spleen cells of RaDR-GFP transgenic mice, suggesting that recombinant cells accumulated in the thymus upon IR exposure. This suggests that IR induces genome instability, revealed as increased HR, that drives the development of thymic lymphoma. Additionally, phenotypic analysis of lymphoma cells showed an increase in the CD4-/CD8+ (CD8SP) cell population and a decrease in the CD4+/CD8- (CD4SP) cell population in the IR-4-month group compared to that in the non-IR group, indicating that IR induces an aberrant cell phenotype characteristic of lymphoma. In conclusion, we observed a significant increase in HR events and abnormal phenotype in thymic lymphoma cells at two and four months after IR exposure in both the thymus and bone marrow tissues, suggesting that genomic instability is involved in the early stages of thymic lymphomagenesis. Our study indicates that HR-visualizing RaDR-GFP transgenic mice can help explore the links between the molecular mechanisms of genome instability and IR-induced tumorigenesis.

8.
Front Oncol ; 12: 808757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155245

RESUMO

Cells respond to DNA damage by activating signaling and DNA repair systems, described as the DNA damage response (DDR). Clarifying DDR pathways and their dysregulation in cancer are important for understanding cancer etiology, how cancer cells exploit the DDR to survive endogenous and treatment-related stress, and to identify DDR targets as therapeutic targets. Cancer is often treated with genotoxic chemicals and/or ionizing radiation. These agents are cytotoxic because they induce DNA double-strand breaks (DSBs) directly, or indirectly by inducing replication stress which causes replication fork collapse to DSBs. EEPD1 and Metnase are structure-specific nucleases, and Metnase is also a protein methyl transferase that methylates histone H3 and itself. EEPD1 and Metnase promote repair of frank, two-ended DSBs, and both promote the timely and accurate restart of replication forks that have collapsed to single-ended DSBs. In addition to its roles in HR, Metnase also promotes DSB repair by classical non-homologous recombination, and chromosome decatenation mediated by TopoIIα. Although mutations in Metnase and EEPD1 are not common in cancer, both proteins are frequently overexpressed, which may help tumor cells manage oncogenic stress or confer resistance to therapeutics. Here we focus on Metnase and EEPD1 DNA repair pathways, and discuss opportunities for targeting these pathways to enhance cancer therapy.

9.
Front Genet ; 12: 748033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646312

RESUMO

Cells must replicate and segregate their DNA to daughter cells accurately to maintain genome stability and prevent cancer. DNA replication is usually fast and accurate, with intrinsic (proofreading) and extrinsic (mismatch repair) error-correction systems. However, replication forks slow or stop when they encounter DNA lesions, natural pause sites, and difficult-to-replicate sequences, or when cells are treated with DNA polymerase inhibitors or hydroxyurea, which depletes nucleotide pools. These challenges are termed replication stress, to which cells respond by activating DNA damage response signaling pathways that delay cell cycle progression, stimulate repair and replication fork restart, or induce apoptosis. Stressed forks are managed by rescue from adjacent forks, repriming, translesion synthesis, template switching, and fork reversal which produces a single-ended double-strand break (seDSB). Stressed forks also collapse to seDSBs when they encounter single-strand nicks or are cleaved by structure-specific nucleases. Reversed and cleaved forks can be restarted by homologous recombination (HR), but seDSBs pose risks of mis-rejoining by non-homologous end-joining (NHEJ) to other DSBs, causing genome rearrangements. HR requires resection of broken ends to create 3' single-stranded DNA for RAD51 recombinase loading, and resected ends are refractory to repair by NHEJ. This Mini Review highlights mechanisms that help maintain genome stability by promoting resection of seDSBs and accurate fork restart by HR.

10.
Cancer Drug Resist ; 4: 244-263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337349

RESUMO

More than half of cancer patients are treated with radiotherapy, which kills tumor cells by directly and indirectly inducing DNA damage, including cytotoxic DNA double-strand breaks (DSBs). Tumor cells respond to these threats by activating a complex signaling network termed the DNA damage response (DDR). The DDR arrests the cell cycle, upregulates DNA repair, and triggers apoptosis when damage is excessive. The DDR signaling and DNA repair pathways are fertile terrain for therapeutic intervention. This review highlights strategies to improve therapeutic gain by targeting DDR and DNA repair pathways to radiosensitize tumor cells, overcome intrinsic and acquired tumor radioresistance, and protect normal tissue. Many biological and environmental factors determine tumor and normal cell responses to ionizing radiation and genotoxic chemotherapeutics. These include cell type and cell cycle phase distribution; tissue/tumor microenvironment and oxygen levels; DNA damage load and quality; DNA repair capacity; and susceptibility to apoptosis or other active or passive cell death pathways. We provide an overview of radiobiological parameters associated with X-ray, proton, and carbon ion radiotherapy; DNA repair and DNA damage signaling pathways; and other factors that regulate tumor and normal cell responses to radiation. We then focus on recent studies exploiting DSB repair pathways to enhance radiotherapy therapeutic gain.

11.
Cancer Res ; 81(12): 3156-3157, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34224374

RESUMO

The cellular DNA damage response (DDR) is a key factor in tumor suppression and tumor responses to genotoxic chemo- and radiotherapy. Master DDR regulators include three phosphatidyl inositol 3' kinase-related kinases (PIKK) called ATM, ATR, and the catalytic subunit of DNA-dependent protein kinase, DNA-PKcs. Among their many functions, PIKKs regulate repair of DNA double-strand breaks (DSB) by homologous recombination (HR) and nonhomologous end-joining (NHEJ). Ionizing radiation induces DSBs that are either widely dispersed and efficiently repaired, or clustered and poorly repaired by the dominant NHEJ pathway. The inefficient repair of clustered DSBs by NHEJ shifts repair toward the competing HR pathway. In this issue of Cancer Research, Zhou and colleagues revealed a novel synthetic lethal approach in which the greater dependency on HR to repair clustered DSBs induced by protons is exploited to enhance killing of tumor cells and tumor xenografts by suppressing HR with an ATM inhibitor or mutant BRCA1. This is an important step toward precision cancer radiotherapy.See related article by Zhou et al., p. 3333.


Assuntos
Quebras de DNA de Cadeia Dupla , Neoplasias , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Neoplasias/genética , Neoplasias/radioterapia , Radiação Ionizante
12.
NAR Cancer ; 2(2): zcaa008, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32743552

RESUMO

Accurate DNA replication and segregation are critical for maintaining genome integrity and suppressing cancer. Metnase and EEPD1 are DNA damage response (DDR) proteins frequently dysregulated in cancer and implicated in cancer etiology and tumor response to genotoxic chemo- and radiotherapy. Here, we examine the DDR in human cell lines with CRISPR/Cas9 knockout of Metnase or EEPD1. The knockout cell lines exhibit slightly slower growth rates, significant hypersensitivity to replication stress, increased genome instability and distinct alterations in DDR signaling. Metnase and EEPD1 are structure-specific nucleases. EEPD1 is recruited to and cleaves stalled forks to initiate fork restart by homologous recombination. Here, we demonstrate that Metnase is also recruited to stalled forks where it appears to dimethylate histone H3 lysine 36 (H3K36me2), raising the possibility that H3K36me2 promotes DDR factor recruitment or limits nucleosome eviction to protect forks from nucleolytic attack. We show that stalled forks are cleaved normally in the absence of Metnase, an important and novel result because a prior study indicated that Metnase nuclease is important for timely fork restart. A double knockout was as sensitive to etoposide as either single knockout, suggesting a degree of epistasis between Metnase and EEPD1. We propose that EEPD1 initiates fork restart by cleaving stalled forks, and that Metnase may promote fork restart by processing homologous recombination intermediates and/or inducing H3K36me2 to recruit DDR factors. By accelerating fork restart, Metnase and EEPD1 reduce the chance that stalled replication forks will adopt toxic or genome-destabilizing structures, preventing genome instability and cancer. Metnase and EEPD1 are overexpressed in some cancers and thus may also promote resistance to genotoxic therapeutics.

13.
Genes (Basel) ; 11(1)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952359

RESUMO

Cells manage to survive, thrive, and divide with high accuracy despite the constant threat of DNA damage. Cells have evolved with several systems that efficiently repair spontaneous, isolated DNA lesions with a high degree of accuracy. Ionizing radiation and a few radiomimetic chemicals can produce clustered DNA damage comprising complex arrangements of single-strand damage and DNA double-strand breaks (DSBs). There is substantial evidence that clustered DNA damage is more mutagenic and cytotoxic than isolated damage. Radiation-induced clustered DNA damage has proven difficult to study because the spectrum of induced lesions is very complex, and lesions are randomly distributed throughout the genome. Nonetheless, it is fairly well-established that radiation-induced clustered DNA damage, including non-DSB and DSB clustered lesions, are poorly repaired or fail to repair, accounting for the greater mutagenic and cytotoxic effects of clustered lesions compared to isolated lesions. High linear energy transfer (LET) charged particle radiation is more cytotoxic per unit dose than low LET radiation because high LET radiation produces more clustered DNA damage. Studies with I-SceI nuclease demonstrate that nuclease-induced DSB clusters are also cytotoxic, indicating that this cytotoxicity is independent of radiogenic lesions, including single-strand lesions and chemically "dirty" DSB ends. The poor repair of clustered DSBs at least in part reflects inhibition of canonical NHEJ by short DNA fragments. This shifts repair toward HR and perhaps alternative NHEJ, and can result in chromothripsis-mediated genome instability or cell death. These principals are important for cancer treatment by low and high LET radiation.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Neoplasias , Instabilidade Genômica , Neoplasias , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/radioterapia
14.
Breast Cancer Res ; 19(1): 122, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29145865

RESUMO

BACKGROUND: Proper repair and restart of stressed replication forks requires intact homologous recombination (HR). HR at stressed replication forks can be initiated by the 5' endonuclease EEPD1, which cleaves the stalled replication fork. Inherited or acquired defects in HR, such as mutations in breast cancer susceptibility protein-1 (BRCA1) or BRCA2, predispose to cancer, including breast and ovarian cancers. In order for these HR-deficient tumor cells to proliferate, they become addicted to a bypass replication fork repair pathway mediated by radiation repair protein 52 (RAD52). Depleting RAD52 can cause synthetic lethality in BRCA1/2 mutant cancers by an unknown molecular mechanism. METHODS: We hypothesized that cleavage of stressed replication forks by EEPD1 generates a fork repair intermediate that is toxic when HR-deficient cells cannot complete repair with the RAD52 bypass pathway. To test this hypothesis, we applied cell survival assays, immunofluorescence staining, DNA fiber and western blot analyses to look at the correlation between cell survival and genome integrity in control, EEPD1, RAD52 and EEPD1/RAD52 co-depletion BRCA1-deficient breast cancer cells. RESULTS: Our data show that depletion of EEPD1 suppresses synthetic lethality, genome instability, mitotic catastrophe, and hypersensitivity to stress of replication of RAD52-depleted, BRCA1 mutant breast cancer cells. Without HR and the RAD52-dependent backup pathway, the BRCA1 mutant cancer cells depleted of EEPD1 skew to the alternative non-homologous end-joining DNA repair pathway for survival. CONCLUSION: This study indicates that the mechanism of synthetic lethality in RAD52-depleted BRCA1 mutant cancer cells depends on the endonuclease EEPD1. The data imply that EEPD1 cleavage of stressed replication forks may result in a toxic intermediate when replication fork repair cannot be completed.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Endodesoxirribonucleases/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Mutações Sintéticas Letais , Proteína BRCA1/deficiência , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quebras de DNA , Reparo do DNA , Replicação do DNA , Feminino , Técnicas de Inativação de Genes , Instabilidade Genômica , Recombinação Homóloga , Humanos , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo
15.
Mutat Res ; 806: 64-74, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28779875

RESUMO

DNA damage is a constant threat to genome integrity. DNA repair and damage signaling networks play a central role maintaining genome stability, suppressing tumorigenesis, and determining tumor response to common cancer chemotherapeutic agents and radiotherapy. DNA double-strand breaks (DSBs) are critical lesions induced by ionizing radiation and when replication forks encounter damage. DSBs can result in mutations and large-scale genome rearrangements reflecting mis-repair by non-homologous end joining or homologous recombination. Ionizing radiation induces genetic change immediately, and it also triggers delayed events weeks or even years after exposure, long after the initial damage has been repaired or diluted through cell division. This review covers DNA damage signaling and repair pathways and cell fate following genotoxic insult, including immediate and delayed genome instability and cell survival/cell death pathways.


Assuntos
Dano ao DNA , Rearranjo Gênico , Genoma Humano , Instabilidade Genômica , Recombinação Homóloga , Transdução de Sinais , Humanos
16.
J Natl Cancer Inst ; 109(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28521333

RESUMO

Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects.


Assuntos
Antineoplásicos/uso terapêutico , Reparo do DNA/efeitos dos fármacos , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Genes BRCA1 , Genes BRCA2 , Recombinação Homóloga/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Mutações Sintéticas Letais
17.
Radiat Res ; 188(1): 82-93, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28535128

RESUMO

Genome instability is a hallmark of cancer cells and dysregulation or defects in DNA repair pathways cause genome instability and are linked to inherited cancer predisposition syndromes. Ionizing radiation can cause immediate effects such as mutation or cell death, observed within hours or a few days after irradiation. Ionizing radiation also induces delayed effects many cell generations after irradiation. Delayed effects include hypermutation, hyper-homologous recombination, chromosome instability and reduced clonogenic survival (delayed death). Delayed hyperrecombination (DHR) is mechanistically distinct from delayed chromosomal instability and delayed death. Using a green fluorescent protein (GFP) direct repeat homologous recombination system, time-lapse microscopy and colony-based assays, we demonstrate that DHR increases several-fold in response to low-LET X rays and high-LET carbon-ion radiation. Time-lapse analyses of DHR revealed two classes of recombinants not detected in colony-based assays, including cells that recombined and then senesced or died. With both low- and high-LET radiation, DHR was evident during the first two weeks postirradiation, but resolved to background levels during the third week. The results indicate that the risk of radiation-induced genome destabilization via DHR is time limited, and suggest that there is little or no additional risk of radiation-induced genome instability mediated by DHR with high-LET radiation compared to low-LET radiation.


Assuntos
Reparo do DNA/genética , Recombinação Homóloga/genética , Recombinação Homóloga/efeitos da radiação , Transferência Linear de Energia/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/radioterapia , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Humanos , Transferência Linear de Energia/efeitos da radiação , Dosagem Radioterapêutica
18.
J Biol Chem ; 292(7): 2795-2804, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049724

RESUMO

Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5' end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5'-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5' end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5'-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5' end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.


Assuntos
Reparo do DNA , Replicação do DNA , Endodesoxirribonucleases/metabolismo , Células HEK293 , Humanos
19.
Mol Cancer Ther ; 16(1): 16-24, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062703

RESUMO

Hsp90 inhibitors have been investigated as cancer therapeutics in monotherapy and to augment radiotherapy; however, serious adverse effects of early-generation Hsp90 inhibitors limited their development. TAS-116 is a novel Hsp90 inhibitor with lower adverse effects than other Hsp90 inhibitors, and here, we investigated the radiosensitizing effects of TAS-116 in low linear energy transfer (LET) X-ray and high LET carbon ion-irradiated human cancer cells and mouse tumor xenografts. TAS-116 decreased cell survival of both X-ray and carbon ion-irradiated human cancer cell lines (HeLa and H1299 cells), and similar to other Hsp90 inhibitors, it did not affect radiosensitivity of noncancerous human fibroblasts. TAS-116 increased the number of radiation-induced γ-H2AX foci and delayed the repair of DNA double-strand breaks (DSB). TAS-116 reduced the expression of proteins that mediate repair of DSBs by homologous recombination (RAD51) and nonhomologous end joining (Ku, DNA-PKcs), and suppressed formation of RAD51 foci and phosphorylation/activation of DNA-PKcs. TAS-116 also decreased expression of the cdc25 cell-cycle progression marker, markedly increasing G2-M arrest. Combined treatment of mouse tumor xenografts with carbon ions and TAS-116 showed promising delay in tumor growth compared with either individual treatment. These results demonstrate that TAS-116 radiosensitizes human cancer cells to both X-rays and carbon ions by inhibiting the two major DSB repair pathways, and these effects were accompanied by marked cell-cycle arrest. The promising results of combination TAS-116 + carbon ion radiotherapy of tumor xenografts justify further exploration of TAS-116 as an adjunct to radiotherapy using low or high LET radiation. Mol Cancer Ther; 16(1); 16-24. ©2016 AACR.


Assuntos
Benzamidas/farmacologia , Radioisótopos de Carbono , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pirazóis/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiação Ionizante , Radiossensibilizantes/farmacologia , Raios X , Animais , Linhagem Celular Tumoral , DNA , Reparo do DNA por Junção de Extremidades , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica , Células HeLa , Histonas/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Camundongos , Proteína Quinase C/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Biol Chem ; 292(4): 1414-1425, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27974460

RESUMO

Stalling at DNA replication forks generates stretches of single-stranded (ss) DNA on both strands that are exposed to nucleolytic degradation, potentially compromising genome stability. One enzyme crucial for DNA replication fork repair and restart of stalled forks in human is Metnase (also known as SETMAR), a chimeric fusion protein consisting of a su(var)3-9, enhancer-of-zeste and trithorax (SET) histone methylase and transposase nuclease domain. We previously showed that Metnase possesses a unique fork cleavage activity necessary for its function in replication restart and that its SET domain is essential for recovery from hydroxyurea-induced DNA damage. However, its exact role in replication restart is unclear. In this study, we show that Metnase associates with exonuclease 1 (Exo1), a 5'-exonuclease crucial for 5'-end resection to mediate DNA processing at stalled forks. Metnase DNA cleavage activity was not required for Exo1 5'-exonuclease activity on the lagging strand daughter DNA, but its DNA binding activity mediated loading of Exo1 onto ssDNA overhangs. Metnase-induced enhancement of Exo1-mediated DNA strand resection required the presence of these overhangs but did not require Metnase's DNA cleavage activity. These results suggest that Metnase enhances Exo1-mediated exonuclease activity on the lagging strand DNA by facilitating Exo1 loading onto a single strand gap at the stalled replication fork.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Enzimas Reparadoras do DNA/genética , DNA de Cadeia Simples/genética , Exodesoxirribonucleases/genética , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Humanos , Hidroxiureia/efeitos adversos , Hidroxiureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA