Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
JCI Insight ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753465

RESUMO

Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that two distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice liver, dual AAV gene therapy combined with rapamycin reduced the impact of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and support clinical translation.

2.
Nat Commun ; 15(1): 1816, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418829

RESUMO

The design of human model systems is highly relevant to unveil the underlying mechanisms of aging and to provide insights on potential interventions to extend human health and life span. In this perspective, we explore the potential of 2D or 3D culture models comprising human induced pluripotent stem cells and transdifferentiated cells obtained from aged or age-related disorder-affected donors to enhance our understanding of human aging and to catalyze the discovery of anti-aging interventions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Idoso , Envelhecimento , Reprogramação Celular/genética , Longevidade
3.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015640

RESUMO

Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Doença de Depósito de Glicogênio Tipo III , Humanos , Camundongos , Ratos , Animais , Doença de Depósito de Glicogênio Tipo III/genética , Doença de Depósito de Glicogênio Tipo III/terapia , Sistema da Enzima Desramificadora do Glicogênio/genética , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Transgenes
4.
Aging Cell ; 22(12): e13983, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858983

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal genetic condition that arises from a single nucleotide alteration in the LMNA gene, leading to the production of a defective lamin A protein known as progerin. The accumulation of progerin accelerates the onset of a dramatic premature aging phenotype in children with HGPS, characterized by low body weight, lipodystrophy, metabolic dysfunction, skin, and musculoskeletal age-related dysfunctions. In most cases, these children die of age-related cardiovascular dysfunction by their early teenage years. The absence of effective treatments for HGPS underscores the critical need to explore novel safe therapeutic strategies. In this study, we show that treatment with the hormone ghrelin increases autophagy, decreases progerin levels, and alleviates other cellular hallmarks of premature aging in human HGPS fibroblasts. Additionally, using a HGPS mouse model (LmnaG609G/G609G mice), we demonstrate that ghrelin administration effectively rescues molecular and histopathological progeroid features, prevents progressive weight loss in later stages, reverses the lipodystrophic phenotype, and extends lifespan of these short-lived mice. Therefore, our findings uncover the potential of modulating ghrelin signaling offers new treatment targets and translational approaches that may improve outcomes and enhance the quality of life for patients with HGPS and other age-related pathologies.


Assuntos
Senilidade Prematura , Progéria , Adolescente , Criança , Humanos , Camundongos , Animais , Progéria/tratamento farmacológico , Progéria/genética , Progéria/metabolismo , Senilidade Prematura/tratamento farmacológico , Senilidade Prematura/genética , Grelina/farmacologia , Qualidade de Vida , Pele/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Envelhecimento
5.
Stem Cell Res ; 72: 103214, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37769385

RESUMO

Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder characterized by a deficiency of glycogen debranching enzyme (GDE) leading to cytosolic glycogen accumulation and inducing liver and muscle pathology. Skin fibroblasts from three GSDIII patients were reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrated Sendai virus. All of the three lines exhibited normal morphology, expression of pluripotent markers, stable karyotype, potential of trilineage differentiation and absence of GDE expression, making them valuable tools for modeling GSDIII disease in vitro, studying pathological mechanisms and investigating potential treatments.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Doença de Depósito de Glicogênio Tipo III , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Depósito de Glicogênio Tipo III/metabolismo , Doença de Depósito de Glicogênio Tipo III/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/patologia , Músculos/metabolismo , Músculos/patologia
6.
Front Cell Dev Biol ; 11: 1163427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250895

RESUMO

Introduction: Glycogen storage disease type III (GSDIII) is a rare genetic disease caused by mutations in the AGL gene encoding the glycogen debranching enzyme (GDE). The deficiency of this enzyme, involved in cytosolic glycogen degradation, leads to pathological glycogen accumulation in liver, skeletal muscles and heart. Although the disease manifests with hypoglycemia and liver metabolism impairment, the progressive myopathy is the major disease burden in adult GSDIII patients, without any curative treatment currently available. Methods: Here, we combined the self-renewal and differentiation capabilities of human induced pluripotent stem cells (hiPSCs) with cutting edge CRISPR/Cas9 gene editing technology to establish a stable AGL knockout cell line and to explore glycogen metabolism in GSDIII. Results: Following skeletal muscle cells differentiation of the edited and control hiPSC lines, our study reports that the insertion of a frameshift mutation in AGL gene results in the loss of GDE expression and persistent glycogen accumulation under glucose starvation conditions. Phenotypically, we demonstrated that the edited skeletal muscle cells faithfully recapitulate the phenotype of differentiated skeletal muscle cells of hiPSCs derived from a GSDIII patient. We also demonstrated that treatment with recombinant AAV vectors expressing the human GDE cleared the accumulated glycogen. Discussion: This study describes the first skeletal muscle cell model of GSDIII derived from hiPSCs and establishes a platform to study the mechanisms that contribute to muscle impairments in GSDIII and to assess the therapeutic potential of pharmacological inducers of glycogen degradation or gene therapy approaches.

7.
Biomedicines ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35740450

RESUMO

Limb girdle muscular dystrophies (LGMD), caused by mutations in 29 different genes, are the fourth most prevalent group of genetic muscle diseases. Although the link between LGMD and its genetic origins has been determined, LGMD still represent an unmet medical need. Here, we describe a platform for modeling LGMD based on the use of human induced pluripotent stem cells (hiPSC). Thanks to the self-renewing and pluripotency properties of hiPSC, this platform provides a renewable and an alternative source of skeletal muscle cells (skMC) to primary, immortalized, or overexpressing cells. We report that skMC derived from hiPSC express the majority of the genes and proteins that cause LGMD. As a proof of concept, we demonstrate the importance of this cellular model for studying LGMDR9 by evaluating disease-specific phenotypes in skMC derived from hiPSC obtained from four patients.

8.
Front Pharmacol ; 13: 856804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571097

RESUMO

Limb-girdle muscular dystrophy type R3 (LGMD R3) is a rare genetic disorder characterized by a progressive proximal muscle weakness and caused by mutations in the SGCA gene encoding alpha-sarcoglycan (α-SG). Here, we report the results of a mechanistic screening ascertaining the molecular mechanisms involved in the degradation of the most prevalent misfolded R77C-α-SG protein. We performed a combinatorial study to identify drugs potentializing the effect of a low dose of the proteasome inhibitor bortezomib on the R77C-α-SG degradation inhibition. Analysis of the screening associated to artificial intelligence-based predictive ADMET characterization of the hits led to identification of the HDAC inhibitor givinostat as potential therapeutical candidate. Functional characterization revealed that givinostat effect was related to autophagic pathway inhibition, unveiling new theories concerning degradation pathways of misfolded SG proteins. Beyond the identification of a new therapeutic option for LGMD R3 patients, our results shed light on the potential repurposing of givinostat for the treatment of other genetic diseases sharing similar protein degradation defects such as LGMD R5 and cystic fibrosis.

9.
Clin Transl Med ; 11(3): e319, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784018

RESUMO

BACKGROUND: Severe ventricular rhythm disturbances are the hallmark of arrhythmogenic cardiomyopathy (ACM), and are often explained by structural conduction abnormalities. However, comprehensive investigations of ACM cell electrical instability are lacking. This study aimed to elucidate early electrical myogenic signature of ACM. METHODS: We investigated a 41-year-old ACM patient with a missense mutation (c.394C>T) in the DSC2 gene, which encodes desmocollin 2. Pathogenicity of this variant was confirmed using a zebrafish DSC2 model system. Control and DSC2 patient-derived pluripotent stem cells were reprogrammed and differentiated into cardiomyocytes (hiPSC-CM) to examine the specific electromechanical phenotype and its modulation by antiarrhythmic drugs (AADs). Samples of the patient's heart and hiPSC-CM were examined to identify molecular and cellular alterations. RESULTS: A shortened action potential duration was associated with reduced Ca2+ current density and increased K+ current density. This finding led to the elucidation of previously unknown abnormal repolarization dynamics in ACM patients. Moreover, the Ca2+ mobilised during transients was decreased, and the Ca2+ sparks frequency was increased. AAD testing revealed the following: (1) flecainide normalised Ca2+ transients and significantly decreased Ca2+ spark occurrence and (2) sotalol significantly lengthened the action potential and normalised the cells' contractile properties. CONCLUSIONS: Thorough analysis of hiPSC-CM derived from the DSC2 patient revealed abnormal repolarization dynamics, prompting the discovery of a short QT interval in some ACM patients. Overall, these results confirm a myogenic origin of ACM electrical instability and provide a rationale for prescribing class 1 and 3 AADs in ACM patients with increased ventricular repolarization reserve.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Desmocolinas/genética , Eletrocardiografia/métodos , Canais Iônicos/genética , Adulto , Animais , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Peixe-Zebra
10.
Nanoscale Horiz ; 6(3): 245-259, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33576750

RESUMO

The vascular bioactivity/safety of nanomaterials is typically evaluated by animal testing, which is of low throughput and does not account for biological differences between animals and humans such as ageing, metabolism and disease profiles. The development of personalized human in vitro platforms to evaluate the interaction of nanomaterials with the vascular system would be important for both therapeutic and regenerative medicine. A library of 30 nanoparticle (NP) formulations, in use in imaging, antimicrobial and pharmaceutical applications, was evaluated in a reporter zebrafish model of vasculogenesis and then tested in personalized humanized models composed of human-induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) with "young" and "aged" phenotypes in 3 vascular network formats: 2D (in polystyrene dish), 3D (in Matrigel) and in a blood vessel on a chip. As a proof of concept, vascular toxicity was used as the main readout. The results show that the toxicity profile of NPs to hiPSC-ECs was dependent on the "age" of the endothelial cells and vascular network format. hiPSC-ECs were less susceptible to the cytotoxicity effect of NPs when cultured in flow than in static conditions, the protective effect being mediated, at least in part, by glycocalyx. Overall, the results presented here highlight the relevance of in vitro hiPSC-derived vascular systems to screen vascular nanomaterial interactions.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Nanopartículas/toxicidade , Adolescente , Animais , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos , Peixe-Zebra
11.
Methods ; 190: 3-12, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278808

RESUMO

What if the next generation of successful treatments was hidden in the current pharmacopoeia? Identifying new indications for existing drugs, also called the drug repurposing or drug rediscovery process, is a highly efficient and low-cost strategy. First reported almost a century ago, drug repurposing has emerged as a valuable therapeutic option for diseases that do not have specific treatments and rare diseases, in particular. This review focuses on Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder that induces accelerated and precocious aging, for which drug repurposing has led to the discovery of several potential treatments over the past decade.


Assuntos
Progéria , Humanos , Lamina Tipo A/genética , Preparações Farmacêuticas , Progéria/tratamento farmacológico , Progéria/genética
12.
Nat Commun ; 11(1): 4110, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807790

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disease in children that leads to early death. Smooth muscle cells (SMCs) are the most affected cells in HGPS individuals, although the reason for such vulnerability remains poorly understood. In this work, we develop a microfluidic chip formed by HGPS-SMCs generated from induced pluripotent stem cells (iPSCs), to study their vulnerability to flow shear stress. HGPS-iPSC SMCs cultured under arterial flow conditions detach from the chip after a few days of culture; this process is mediated by the upregulation of metalloprotease 13 (MMP13). Importantly, double-mutant LmnaG609G/G609GMmp13-/- mice or LmnaG609G/G609GMmp13+/+ mice treated with a MMP inhibitor show lower SMC loss in the aortic arch than controls. MMP13 upregulation appears to be mediated, at least in part, by the upregulation of glycocalyx. Our HGPS-SMCs chip represents a platform for developing treatments for HGPS individuals that may complement previous pre-clinical and clinical treatments.


Assuntos
Metaloproteinase 13 da Matriz/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Biotecnologia/métodos , Doenças Cardiovasculares/metabolismo , Feminino , Frequência Cardíaca/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Camundongos Mutantes , Miócitos de Músculo Liso/efeitos dos fármacos , Progéria/metabolismo , Progéria/patologia , Proteômica/métodos
13.
Sci Rep ; 9(1): 6915, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061434

RESUMO

Limb-girdle muscular dystrophy type 2D (LGMD2D) is characterized by a progressive proximal muscle weakness. LGMD2D is caused by mutations in the gene encoding α-sarcoglycan (α-SG), a dystrophin-associated glycoprotein that plays a key role in the maintenance of sarcolemma integrity in striated muscles. We report here on the development of a new in vitro high-throughput screening assay that allows the monitoring of the proper localization of the most prevalent mutant form of α-SG (R77C substitution). Using this assay, we screened a library of 2560 FDA-approved drugs and bioactive compounds and identified thiostrepton, a cyclic antibiotic, as a potential drug to repurpose for LGMD2D treatment. Characterization of the thiostrepton effect revealed a positive impact on R77C-α-SG and other missense mutant protein localization (R34H, I124T, V247M) in fibroblasts overexpressing these proteins. Finally, further investigations of the molecular mechanisms of action of the compound revealed an inhibition of the chymotrypsin-like activity of the proteasome 24 h after thiostrepton treatment and a synergistic effect with bortezomib, an FDA-approved proteasome inhibitor. This study reports on the first in vitro model for LGMD2D that is compatible with high-throughput screening and proposes a new therapeutic option for LGMD2D caused by missense mutations of α-SG.


Assuntos
Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Sarcoglicanas/química , Sarcoglicanas/metabolismo , Tioestreptona/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Mutantes/genética , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Sarcoglicanas/genética
14.
Sci Rep ; 8(1): 9112, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904107

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disorder that leads to premature aging. In this study, we used induced pluripotent stem cells to investigate the hypopigmentation phenotypes observed in patients with progeria. Accordingly, two iPS cell lines were derived from cells from HGPS patients and differentiated into melanocytes. Measurements of melanin content revealed a lower synthesis of melanin in HGPS melanocytes as compared to non-pathologic cells. Analysis of the melanosome maturation process by electron microscopy revealed a lower percentage of mature, fully pigmented melanosomes. Finally, a functional rescue experiment revealed the direct role of progerin in the regulation of melanogenesis. Overall, these results report a new dysregulated pathway in HGPS and open up novel perspectives in the study of pigmentation phenotypes that are associated with normal and pathological aging.


Assuntos
Células-Tronco Pluripotentes Induzidas , Melanócitos , Melanossomas , Modelos Biológicos , Transtornos da Pigmentação , Progéria , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Melanócitos/metabolismo , Melanócitos/patologia , Melanossomas/metabolismo , Melanossomas/patologia , Transtornos da Pigmentação/metabolismo , Transtornos da Pigmentação/patologia , Progéria/metabolismo , Progéria/patologia
15.
ACS Biomater Sci Eng ; 4(5): 1498-1504, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445307

RESUMO

Aging is characterized by a progressive accumulation of cellular damage, which leads to impaired function. Little is known whether substrates can influence cell aging. This is of utmost importance in the development of medical devices that are in contact with human tissue for long periods of time. To address this question, we have used an accelerated aging cell model derived from Hutchinson-Gilford Progeria Syndrome (HGPS) induced pluripotent stem cells (iPSCs). Our results show that HGPS-iPSC smooth muscle cells (SMCs) have an increased aging profile in substrates with specific micropatterns than in flat ones. This is characterized by an up-regulation in the expression of progerin, ß-galactosidase, annexin 3 and 5, and caspase 9. Signs of cell aging are also observed in SMCs without HGPS cultured in substrates with specific microtopographies. It is further showed that specific micropatterned substrates induce cell aging by triggering a DNA damage program likely by the disruption between cyto- and nucleoskeleton.

16.
EMBO Mol Med ; 9(9): 1294-1313, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674081

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a lethal premature and accelerated aging disease caused by a de novo point mutation in LMNA encoding A-type lamins. Progerin, a truncated and toxic prelamin A issued from aberrant splicing, accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. We show that progerin is sequestered into abnormally shaped promyelocytic nuclear bodies, identified as novel biomarkers in late passage HGPS cell lines. We found that the proteasome inhibitor MG132 induces progerin degradation through macroautophagy and strongly reduces progerin production through downregulation of SRSF-1 and SRSF-5 accumulation, controlling prelamin A mRNA aberrant splicing. MG132 treatment improves cellular HGPS phenotypes. MG132 injection in skeletal muscle of LmnaG609G/G609G mice locally reduces SRSF-1 expression and progerin levels. Altogether, we demonstrate progerin reduction based on MG132 dual action and shed light on a promising class of molecules toward a potential therapy for children with HGPS.


Assuntos
Autofagia/efeitos dos fármacos , Leupeptinas/administração & dosagem , Progéria/tratamento farmacológico , Splicing de RNA/efeitos dos fármacos , Animais , Feminino , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Masculino , Camundongos , Camundongos Knockout , Progéria/genética , Progéria/metabolismo , Progéria/fisiopatologia , Proteólise/efeitos dos fármacos , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
17.
Small ; 13(15)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28211642

RESUMO

Organ-on-a-chip platforms seek to recapitulate the complex microenvironment of human organs using miniaturized microfluidic devices. Besides modeling healthy organs, these devices have been used to model diseases, yielding new insights into pathophysiology. Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease showing accelerated vascular aging, leading to the death of patients due to cardiovascular diseases. HGPS targets primarily vascular cells, which reside in mechanically active tissues. Here, a progeria-on-a-chip model is developed and the effects of biomechanical strain are examined in the context of vascular aging and disease. Physiological strain induces a contractile phenotype in primary smooth muscle cells (SMCs), while a pathological strain induces a hypertensive phenotype similar to that of angiotensin II treatment. Interestingly, SMCs derived from human induced pluripotent stem cells of HGPS donors (HGPS iPS-SMCs), but not from healthy donors, show an exacerbated inflammatory response to strain. In particular, increased levels of inflammation markers as well as DNA damage are observed. Pharmacological intervention reverses the strain-induced damage by shifting gene expression profile away from inflammation. The progeria-on-a-chip is a relevant platform to study biomechanics in vascular biology, particularly in the setting of vascular disease and aging, while simultaneously facilitating the discovery of new drugs and/or therapeutic targets.


Assuntos
Progressão da Doença , Inflamação/patologia , Dispositivos Lab-On-A-Chip , Progéria/fisiopatologia , Angiotensina II/farmacologia , Fenômenos Biomecânicos , Vasos Sanguíneos/patologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lovastatina/farmacologia , Microfluídica , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fenótipo
18.
Sci Rep ; 6: 34798, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739443

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.


Assuntos
Senilidade Prematura/terapia , Fosfatase Alcalina/antagonistas & inibidores , Células-Tronco Pluripotentes Induzidas/fisiologia , Isotretinoína/uso terapêutico , Células-Tronco Mesenquimais/fisiologia , Progéria/terapia , Tretinoína/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Criança , Regulação da Expressão Gênica , Regeneração Tecidual Guiada , Ensaios de Triagem em Larga Escala , Humanos , Isotretinoína/farmacologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Osteogênese , Tretinoína/farmacologia
19.
NPJ Aging Mech Dis ; 2: 16026, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28721276

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder that causes systemic accelerated aging in children. This syndrome is due to a mutation in the LMNA gene that leads to the production of a truncated and toxic form of lamin A called progerin. Because the balance between the A-type lamins is controlled by the RNA-binding protein SRSF1, we have hypothesized that its inhibition may have therapeutic effects for HGPS. For this purpose, we evaluated the antidiabetic drug metformin and demonstrated that 48 h treatment with 5 mmol/l metformin decreases SRSF1 and progerin expression in mesenchymal stem cells derived from HGPS induced pluripotent stem cells (HGPS MSCs). The effect of metformin on progerin was then confirmed in several in vitro models of HGPS, i.e., human primary HGPS fibroblasts, LmnaG609G/G609G mouse fibroblasts and healthy MSCs previously treated with a PMO (phosphorodiamidate morpholino oligonucleotide) that induces progerin. This was accompanied by an improvement in two in vitro phenotypes associated with the disease: nuclear shape abnormalities and premature osteoblastic differentiation of HGPS MSCs. Overall, these results suggest a novel approach towards therapeutics for HGPS that can be added to the currently assayed treatments that target other molecular defects associated with the disease.

20.
Mol Ther Nucleic Acids ; 4: e262, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26528939

RESUMO

Major physiological changes are governed by alternative splicing of RNA, and its misregulation may lead to specific diseases. With the use of a genome-wide approach, we show here that this splicing step can be modified by medication and demonstrate the effects of the biguanide metformin, on alternative splicing. The mechanism of action involves AMPK activation and downregulation of the RBM3 RNA-binding protein. The effects of metformin treatment were tested on myotonic dystrophy type I (DM1), a multisystemic disease considered to be a spliceopathy. We show that this drug promotes a corrective effect on several splicing defects associated with DM1 in derivatives of human embryonic stem cells carrying the causal mutation of DM1 as well as in primary myoblasts derived from patients. The biological effects of metformin were shown to be compatible with typical therapeutic dosages in a clinical investigation involving diabetic patients. The drug appears to act as a modifier of alternative splicing of a subset of genes and may therefore have novel therapeutic potential for many more diseases besides those directly linked to defective alternative splicing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA