Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105888

RESUMO

The spread of microbial resistance is a threat to public health. In this study, the anti-microbial, anti-biofilm, and efflux pump inhibitory effects of ellagic acid-loaded magnetic nanoparticles (Fe3O4NPs@EA) against beta-lactamase producing Escherichia coli isolates have been investigated. The effects of Fe3O4 NPs@EA on the growth inhibition of E. coli isolates were determined by disc diffusion method and determining the minimum inhibitory concentration was done using broth micro-dilution method. The anti-biofilm effect of nanoparticles was investigated using the microplate method. The efflux pump inhibitory effect of nanoparticles was investigated using cart-wheel method and by investigating the effect of nanoparticles on acrB and tolC genes expression levels. Fe3O4 NPs@EA showed anti-bacterial effects against test bacteria, and the MIC of these nanoparticles varied from 0.19 to 1.56 mg/mL. These nanoparticles caused a 43-62% reduction in biofilm formation of test bacteria compared to control. Furthermore, efflux pump inhibitory effect of these nanoparticles was confirmed at a concentration of 1/8 MIC, and the expression of acrB and tolC genes decreased in bacteria treated with 1/4 MIC Fe3O4 NPs@EA. According to the results, the use of nanoparticles containing ellagic acid can provide a basis for the development of new treatments against drug-resistant E. coli. This substance may improve the concentration of antibiotics in the bacterial cell and increase their effectiveness by inhibiting the efflux in E. coli isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA