Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(5): 770-786.e9, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36805027

RESUMO

E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Transporte , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Sci Rep ; 12(1): 7820, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551201

RESUMO

Ozz, a member of the SOCS-box family of proteins, is the substrate-binding component of CRL5Ozz, a muscle-specific Cullin-RING ubiquitin ligase complex composed of Elongin B/C, Cullin 5 and Rbx1. CRL5Ozz targets for proteasomal degradation selected pools of substrates, including sarcolemma-associated ß-catenin, sarcomeric MyHCemb and Alix/PDCD6IP, which all interact with the actin cytoskeleton. Ubiquitination and degradation of these substrates are required for the remodeling of the contractile sarcomeric apparatus. However, how CRL5Ozz assembles into an active E3 complex and interacts with its substrates remain unexplored. Here, we applied a baculovirus-based expression system to produce large quantities of two subcomplexes, Ozz-EloBC and Cul5-Rbx1. We show that these subcomplexes mixed in a 1:1 ratio reconstitutes a five-components CRL5Ozz monomer and dimer, but that the reconstituted complex interacts with its substrates only as monomer. The in vitro assembled CRL5Ozz complex maintains the capacity to polyubiquitinate each of its substrates, indicating that the protein production method used in these studies is well-suited to generate large amounts of a functional CRL5Ozz. Our findings highlight a mode of assembly of the CRL5Ozz that differs in presence or absence of its cognate substrates and grant further structural studies.


Assuntos
Proteínas Culina , Ubiquitina-Proteína Ligases , Proteínas Culina/genética , Ligação Proteica , Sarcômeros/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
3.
Nature ; 600(7887): 153-157, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819673

RESUMO

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that regulates important functions in the central nervous system1,2. The ALK gene is a hotspot for chromosomal translocation events that result in several fusion proteins that cause a variety of human malignancies3. Somatic and germline gain-of-function mutations in ALK were identified in paediatric neuroblastoma4-7. ALK is composed of an extracellular region (ECR), a single transmembrane helix and an intracellular tyrosine kinase domain8,9. ALK is activated by the binding of ALKAL1 and ALKAL2 ligands10-14 to its ECR, but the lack of structural information for the ALK-ECR or for ALKAL ligands has limited our understanding of ALK activation. Here we used cryo-electron microscopy, nuclear magnetic resonance and X-ray crystallography to determine the atomic details of human ALK dimerization and activation by ALKAL1 and ALKAL2. Our data reveal a mechanism of RTK activation that allows dimerization by either dimeric (ALKAL2) or monomeric (ALKAL1) ligands. This mechanism is underpinned by an unusual architecture of the receptor-ligand complex. The ALK-ECR undergoes a pronounced ligand-induced rearrangement and adopts an orientation parallel to the membrane surface. This orientation is further stabilized by an interaction between the ligand and the membrane. Our findings highlight the diversity in RTK oligomerization and activation mechanisms.


Assuntos
Quinase do Linfoma Anaplásico/química , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/ultraestrutura , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Citocinas/química , Citocinas/metabolismo , Citocinas/ultraestrutura , Ativação Enzimática , Humanos , Ligantes , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Multimerização Proteica
4.
J Mol Biol ; 433(18): 167120, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34197833

RESUMO

Proteins that exhibit intrinsically disordered regions (IDRs) are prevalent in the human proteome and perform diverse biological functions, including signaling and regulation. Due to these important roles, misregulation of intrinsically disordered proteins (IDPs) is associated with myriad human diseases, including neurodegeneration and cancer. The inherent flexibility of IDPs limits the applicability of the traditional structure-based drug design paradigm; therefore, IDPs have long been considered "undruggable". Using NMR spectroscopy and other methods, we previously discovered small, drug-like molecules that bind specifically, albeit weakly, to dynamic clusters of aromatic residues within p27Kip1 (p27), an archetypal disordered protein involved in cell cycle regulation. Here, using synthetic chemistry, NMR spectroscopy and other biophysical methods, we discovered elaborated analogs of our previously reported molecules with 30-fold increased affinity for p27 (apparent Kd = 57 ± 19 µM). Strikingly, using analytical ultracentrifugation methods, we showed that the highest affinity compounds caused p27 to form soluble, disordered oligomers. Based on these observations, we propose that sequestration within soluble oligomers may represent a general strategy for therapeutically targeting disease-associated IDPs in the future.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/química , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Proteínas Intrinsicamente Desordenadas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química
5.
Nucleic Acids Res ; 49(5): 2931-2945, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577679

RESUMO

Liquid-liquid phase separation underlies the membrane-less compartmentalization of cells. Intrinsically disordered low-complexity domains (LCDs) often mediate phase separation, but how their phase behavior is modulated by folded domains is incompletely understood. Here, we interrogate the interplay between folded and disordered domains of the RNA-binding protein hnRNPA1. The LCD of hnRNPA1 is sufficient for mediating phase separation in vitro. However, we show that the folded RRM domains and a folded solubility-tag modify the phase behavior, even in the absence of RNA. Notably, the presence of the folded domains reverses the salt dependence of the driving force for phase separation relative to the LCD alone. Small-angle X-ray scattering experiments and coarse-grained MD simulations show that the LCD interacts transiently with the RRMs and/or the solubility-tag in a salt-sensitive manner, providing a mechanistic explanation for the observed salt-dependent phase separation. These data point to two effects from the folded domains: (i) electrostatically-mediated interactions that compact hnRNPA1 and contribute to phase separation and (ii) increased solubility at higher ionic strengths mediated by the folded domains. The interplay between disordered and folded domains can modify the dependence of phase behavior on solution conditions and can obscure signatures of physicochemical interactions underlying phase separation.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/química , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Domínios Proteicos , Espalhamento a Baixo Ângulo , Cloreto de Sódio/química , Solubilidade , Difração de Raios X
6.
Nature ; 573(7775): 590-594, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511697

RESUMO

The cellular stress response has a vital role in regulating homeostasis by modulating cell survival and death. Stress granules are cytoplasmic compartments that enable cells to survive various stressors. Defects in the assembly and disassembly of stress granules are linked to neurodegenerative diseases, aberrant antiviral responses and cancer1-5. Inflammasomes are multi-protein heteromeric complexes that sense molecular patterns that are associated with damage or intracellular pathogens, and assemble into cytosolic compartments known as ASC specks to facilitate the activation of caspase-1. Activation of inflammasomes induces the secretion of interleukin (IL)-1ß and IL-18 and drives cell fate towards pyroptosis-a form of programmed inflammatory cell death that has major roles in health and disease6-12. Although both stress granules and inflammasomes can be triggered by the sensing of cellular stress, they drive contrasting cell-fate decisions. The crosstalk between stress granules and inflammasomes and how this informs cell fate has not been well-studied. Here we show that the induction of stress granules specifically inhibits NLRP3 inflammasome activation, ASC speck formation and pyroptosis. The stress granule protein DDX3X interacts with NLRP3 to drive inflammasome activation. Assembly of stress granules leads to the sequestration of DDX3X, and thereby the inhibition of NLRP3 inflammasome activation. Stress granules and the NLRP3 inflammasome compete for DDX3X molecules to coordinate the activation of innate responses and subsequent cell-fate decisions under stress conditions. Induction of stress granules or loss of DDX3X in the myeloid compartment leads to a decrease in the production of inflammasome-dependent cytokines in vivo. Our findings suggest that macrophages use the availability of DDX3X to interpret stress signals and choose between pro-survival stress granules and pyroptotic ASC specks. Together, our data demonstrate the role of DDX3X in driving NLRP3 inflammasome and stress granule assembly, and suggest a rheostat-like mechanistic paradigm for regulating live-or-die cell-fate decisions under stress conditions.


Assuntos
Morte Celular/genética , RNA Helicases DEAD-box/metabolismo , Inflamassomos/genética , Macrófagos/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Fisiológico/genética , Animais , Linhagem Celular , Sobrevivência Celular/genética , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Humanos , Inflamassomos/imunologia , Macrófagos/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
7.
Mol Cell ; 74(4): 713-728.e6, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30981631

RESUMO

Repeat expansion in the C9orf72 gene is the most common cause of the neurodegenerative disorder amyotrophic lateral sclerosis (C9-ALS) and is linked to the unconventional translation of five dipeptide-repeat polypeptides (DPRs). The two enriched in arginine, poly(GR) and poly(PR), infiltrate liquid-like nucleoli, co-localize with the nucleolar protein nucleophosmin (NPM1), and alter the phase separation behavior of NPM1 in vitro. Here, we show that poly(PR) DPRs bind tightly to a long acidic tract within the intrinsically disordered region of NPM1, altering its phase separation with nucleolar partners to the extreme of forming large, soluble complexes that cause droplet dissolution in vitro. In cells, poly(PR) DPRs disperse NPM1 from nucleoli and entrap rRNA in static condensates in a DPR-length-dependent manner. We propose that R-rich DPR toxicity involves disrupting the role of phase separation by NPM1 in organizing ribosomal proteins and RNAs within the nucleolus.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Proteínas Nucleares/genética , Sequências Repetitivas de Aminoácidos/genética , Esclerose Lateral Amiotrófica/patologia , Arginina/genética , Nucléolo Celular/química , Nucléolo Celular/genética , Dipeptídeos/genética , Humanos , Nucleofosmina , Peptídeos/genética , Poli A/genética , RNA Ribossômico/genética
8.
Cell Chem Biol ; 26(6): 863-877.e7, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31031142

RESUMO

Necroptosis is an inflammatory form of programmed cell death executed through plasma membrane rupture by the pseudokinase mixed lineage kinase domain-like (MLKL). We previously showed that MLKL activation requires metabolites of the inositol phosphate (IP) pathway. Here we reveal that I(1,3,4,6)P4, I(1,3,4,5,6)P5, and IP6 promote membrane permeabilization by MLKL through directly binding the N-terminal executioner domain (NED) and dissociating its auto-inhibitory region. We show that IP6 and inositol pentakisphosphate 2-kinase (IPPK) are required for necroptosis as IPPK deletion ablated IP6 production and inhibited necroptosis. The NED auto-inhibitory region is more extensive than originally described and single amino acid substitutions along this region induce spontaneous necroptosis by MLKL. Activating IPs bind three sites with affinity of 100-600 µM to destabilize contacts between the auto-inhibitory region and NED, thereby promoting MLKL activation. We therefore uncover MLKL's activating switch in NED triggered by a select repertoire of IP metabolites.


Assuntos
Fosfatos de Inositol/metabolismo , Proteínas Quinases/metabolismo , Animais , Sobrevivência Celular , Células HT29 , Humanos , Proteínas Quinases/isolamento & purificação , Células Sf9 , Spodoptera
9.
Nat Commun ; 9(1): 842, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483575

RESUMO

Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid-liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes within NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.


Assuntos
Nucléolo Celular/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Nucleares/química , Sítios de Ligação , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Modelos Moleculares , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Biogênese de Organelas , Transição de Fase , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Eletricidade Estática
10.
EMBO J ; 37(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438978

RESUMO

TDP-43 is an RNA-binding protein active in splicing that concentrates into membraneless ribonucleoprotein granules and forms aggregates in amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Although best known for its predominantly disordered C-terminal domain which mediates ALS inclusions, TDP-43 has a globular N-terminal domain (NTD). Here, we show that TDP-43 NTD assembles into head-to-tail linear chains and that phosphomimetic substitution at S48 disrupts TDP-43 polymeric assembly, discourages liquid-liquid phase separation (LLPS) in vitro, fluidizes liquid-liquid phase separated nuclear TDP-43 reporter constructs in cells, and disrupts RNA splicing activity. Finally, we present the solution NMR structure of a head-to-tail NTD dimer comprised of two engineered variants that allow saturation of the native polymerization interface while disrupting higher-order polymerization. These data provide structural detail for the established mechanistic role of the well-folded TDP-43 NTD in splicing and link this function to LLPS. In addition, the fusion-tag solubilized, recombinant form of TDP-43 full-length protein developed here will enable future phase separation and in vitro biochemical assays on TDP-43 function and interactions that have been hampered in the past by TDP-43 aggregation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Agregação Patológica de Proteínas/genética , Domínios Proteicos/genética , Splicing de RNA/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Polimerização , Polímeros/metabolismo , Agregação Patológica de Proteínas/patologia
11.
Nat Commun ; 8(1): 1547, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146910

RESUMO

The overall survival of patients with acute myeloid leukemia (AML) is poor and identification of new disease-related therapeutic targets remains a major goal for this disease. Here we show that expression of MPP1, a PDZ-domain-containing protein, highly correlated with ABCC4 in AML, is associated with worse overall survival in AML. Murine hematopoietic progenitor cells overexpressing MPP1 acquired the ability to serially replate in methylcellulose culture, a property crucially dependent upon ABCC4. The highly conserved PDZ-binding motif of ABCC4 is required for ABCC4 and MPP1 to form a protein complex, which increased ABCC4 membrane localization and retention, to enhance drug resistance. Specific disruption of this protein complex, either genetically or chemically, removed ABCC4 from the plasma membrane, increased drug sensitivity, and abrogated MPP1-dependent hematopoietic progenitor cell replating in methylcellulose. High-throughput screening identified Antimycin A as a small molecule that disrupted the ABCC4-MPP1 protein complex and reversed drug resistance in AML cell lines and in primary patient AML cells. In all, targeting the ABCC4-MPP1 protein complex can lead to new therapies to improve treatment outcome of AML, a disease where the long-term prognosis is poor.


Assuntos
Proteínas Sanguíneas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Doença Aguda , Animais , Antimicina A/farmacologia , Proteínas Sanguíneas/genética , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide/genética , Leucemia Mieloide/patologia , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ligação Proteica/efeitos dos fármacos
12.
EMBO J ; 35(12): 1254-75, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27220849

RESUMO

Membrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin-3-RING ubiquitin ligase (CRL3) substrate adaptor, self-associates into higher-order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild-type SPOP localizes to liquid nuclear speckles, self-association-deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB-mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration-dependent populations of the resulting oligomeric species. Higher-order oligomerization of SPOP stimulates CRL3(SPOP) ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher-order protein self-association may be a general mechanism to concentrate functional components in membrane-less cellular bodies.


Assuntos
Núcleo Celular/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica , Proteínas Repressoras/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios Proteicos , Ubiquitinação , Proteína Gli3 com Dedos de Zinco
13.
Proc Natl Acad Sci U S A ; 113(12): 3275-80, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951671

RESUMO

The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY-ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA-gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA-UvsX filament.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Proteínas Virais/química , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Relação Estrutura-Atividade
14.
Biochemistry ; 55(9): 1332-45, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26866573

RESUMO

Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor tyrosine kinase and belongs to the focal adhesion kinase (FAK) family. Like FAK, the C-terminal focal adhesion-targeting (FAT) domain of Pyk2 binds to paxillin, a scaffold protein in focal adhesions; however, the interaction between the FAT domain of Pyk2 and paxillin is dynamic and unstable. Leupaxin is another member in the paxillin family and was suggested to be the native binding partner of Pyk2; Pyk2 gene expression is strongly correlated with that of leupaxin in many tissues including primary breast cancer. Here, we report that leupaxin interacts with Pyk2-FAT. Leupaxin has four leucine-aspartate (LD) motifs. The first and third LD motifs of leupaxin preferably target the two LD-binding sites on the Pyk2-FAT domain, respectively. Moreover, the full-length leupaxin binds to Pyk2-FAT as a stable one-to-one complex. Together, we propose that there is an underlying selectivity between leupaxin and paxillin for Pyk2, which may influence the differing behavior of the two proteins at focal adhesion sites.


Assuntos
Ácido Aspártico/química , Moléculas de Adesão Celular/química , Quinase 2 de Adesão Focal/química , Adesões Focais/química , Leucina/química , Fosfoproteínas/química , Ácido Aspártico/metabolismo , Moléculas de Adesão Celular/metabolismo , Cristalização , Quinase 2 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Humanos , Leucina/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/fisiologia
15.
Mol Cell ; 61(4): 589-601, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26853145

RESUMO

Necroptosis is a cell death pathway regulated by the receptor interacting protein kinase 3 (RIPK3) and the mixed lineage kinase domain-like (MLKL) pseudokinase. How MLKL executes plasma membrane rupture upon phosphorylation by RIPK3 remains controversial. Here, we characterize the hierarchical transduction of structural changes in MLKL that culminate in necroptosis. The MLKL brace, proximal to the N-terminal helix bundle (NB), is involved in oligomerization to facilitate plasma membrane targeting through the low-affinity binding of NB to phosphorylated inositol polar head groups of phosphatidylinositol phosphate (PIP) phospholipids. At the membrane, the NB undergoes a "rolling over" mechanism to expose additional higher-affinity PIP-binding sites responsible for robust association to the membrane and displacement of the brace from the NB. PI(4,5)P2 is the preferred PIP-binding partner. We investigate the specific association of MLKL with PIPs and subsequent structural changes during necroptosis.


Assuntos
Fibroblastos/citologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Modelos Moleculares , Fosforilação , Proteínas Quinases/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
16.
Elife ; 52016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26836305

RESUMO

The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.


Assuntos
Nucléolo Celular/química , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica , RNA Ribossômico/metabolismo , Humanos , Nucleofosmina , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
17.
J Biol Chem ; 291(12): 6292-303, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26774272

RESUMO

Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/química , Expressão Gênica , Ligação de Hidrogênio , Modelos Moleculares , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
J Mol Biol ; 428(6): 1256-1271, 2016 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-26475525

RESUMO

Primary sequence motifs, with millimolar affinities for binding partners, are abundant in disordered protein regions. In multivalent interactions, such weak linear motifs can cooperate to recruit binding partners via avidity effects. If linear motifs recruit modifying enzymes, optimal placement of weak motifs may regulate access to modification sites. Weak motifs may thus exert physiological relevance stronger than that suggested by their affinities, but molecular mechanisms of their function are still poorly understood. Herein, we use the N-terminal disordered region of the Hedgehog transcriptional regulator Gli3 (Gli3(1-90)) to determine the role of weak motifs encoded in its primary sequence for the recruitment of its ubiquitin ligase CRL3(SPOP) and the subsequent effect on ubiquitination efficiency. The substrate adaptor SPOP binds linear motifs through its MATH (meprin and TRAF homology) domain and forms higher-order oligomers through its oligomerization domains, rendering SPOP multivalent for its substrates. Gli3 has multiple weak SPOP binding motifs. We map three such motifs in Gli3(1-90), the weakest of which has a millimolar dissociation constant. Multivalency of ligase and substrate for each other facilitates enhanced ligase recruitment and stimulates Gli3(1-90) ubiquitination in in vitro ubiquitination assays. We speculate that the weak motifs enable processivity through avidity effects and by providing steric access to lysine residues that are otherwise not prioritized for polyubiquitination. Weak motifs may generally be employed in multivalent systems to act as gatekeepers regulating post-translational modification.


Assuntos
Motivos de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Animais , Ouriços , Ligação Proteica , Ubiquitinação
19.
Nucleic Acids Res ; 43(19): 9553-63, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26365238

RESUMO

The hexameric Minichromosome Maintenance (MCM) protein complex forms a ring that unwinds DNA at the replication fork in eukaryotes and archaea. Our recent crystal structure of an archaeal MCM N-terminal domain bound to single-stranded DNA (ssDNA) revealed ssDNA associating across tight subunit interfaces but not at the loose interfaces, indicating that DNA-binding is governed not only by the DNA-binding residues of the subunits (MCM ssDNA-binding motif, MSSB) but also by the relative orientation of the subunits. We now extend these findings by showing that DNA-binding by the MCM N-terminal domain of the archaeal organism Pyrococcus furiosus occurs specifically in the hexameric oligomeric form. We show that mutants defective for hexamerization are defective in binding ssDNA despite retaining all the residues observed to interact with ssDNA in the crystal structure. One mutation that exhibits severely defective hexamerization and ssDNA-binding is at a conserved phenylalanine that aligns with the mouse Mcm4(Chaos3) mutation associated with chromosomal instability, cancer, and decreased intersubunit association.


Assuntos
Proteínas Arqueais/química , Proteínas de Ligação a DNA/química , Proteínas de Manutenção de Minicromossomo/química , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Pyrococcus furiosus
20.
Mol Cell ; 56(2): 246-260, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25306923

RESUMO

Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here we show that human APC's RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms. During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.


Assuntos
Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Poliubiquitina/biossíntese , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Sequência de Aminoácidos , Subunidade Apc4 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Pontos de Checagem do Ciclo Celular , Células HeLa , Humanos , Dados de Sequência Molecular , Poliubiquitina/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA