Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Gen Appl Microbiol ; 68(6): 295-302, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35934805

RESUMO

There is currently great interest in the salt-tolerant yeast strains used to produce miso and soy sauce. Since the isolation of Zygosaccharomyces sp. strain from Japanese miso more than 60 years, several hybrid strains have been identified in fermented foods. Studies have shown that the active mating-type locus of the original Zygosaccharomyces sp. yeast strain is located between the T-subgenome sequence and the P-subgenome sequence. In this study, 32 salt-tolerant Zygosaccharomyces sp. yeast strains were isolated from five miso factories in Hiroshima Prefecture, Japan. Analysis by flow cytometry revealed that 27 strains were diploid and five strains were haploid. PCR analysis indicated that the 27 diploid strains had the same chromosomal structure of the active mating-type (MAT) locus as the original yeast strain isolated from miso 60 years ago. In addition, the 27 diploid strains were allodiploid, namely, natural hybrids of Z. rouxii and a related species, while the five haploid strains were all Z. rouxii. We found that cells of yeast strains isolated from miso changed morphologically when co-cultured with a yeast strain of opposite mating-type under nitrogen starvation conditions. The DNA sequence of the active mating-type locus and the results of cell morphology changes by co-culture were consistent with the mating type of each strain shown in the mating experiments. These findings will be useful for the future production of miso and soy sauce.


Assuntos
Alimentos de Soja , Zygosaccharomyces , Saccharomyces cerevisiae , Zygosaccharomyces/genética , Japão
2.
Yeast ; 38(8): 471-479, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811363

RESUMO

Zygosaccharomyces sp. is an industrially important yeast for the production traditional fermented foods in Japan. At present, however, there is no easy method for mating Zygosaccharomyces sp. strains in the laboratory; furthermore, little is known about the expression of mating-type-specific genes in this yeast. Here, mating was observed when Zygosaccharomyces sp. was subjected to nitrogen-starvation conditions. The expression of mating-type-specific genes, Zygo STE6 and Zygo MFα1, was induced under nitrogen-starvation conditions, as confirmed by lacZ reporter assay. This expression was mating-type-specific: Zygo STE6 was expressed specifically for mating-type a, whereas and Zygo MFα1 was expressed specifically for mating-type α. Yeast strains Zygosaccharomyces rouxii DL2 and DA2, derived from type strain Z. rouxii CBS732, did not show mating even under nitrogen-starvation conditions. Gene sequencing revealed that the Zygo STE12 in Z. rouxii CBS732 has a frameshift mutation. Under nitrogen starvation, mating was observed in both DL2 and DA2 transformed with the wild-type Zygo STE12. The expression of Zygo STE6 in Z. rouxii DL2 transformed with wild-type Zygo STE12 under nitrogen-starvation conditions was confirmed by lacZ reporter assay. Collectively, these results revealed that, under nitrogen-starvation conditions, Zygosaccharomyces sp. can mate and mating-type-specific genes are expressed. Furthermore, Zygo Ste12 is essential for both mating and the expression of mating-type-specific genes in Zygosaccharomyces sp.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Fator de Acasalamento/genética , Zygosaccharomyces/genética , Sequência de Aminoácidos , DNA Fúngico/genética , Expressão Gênica , Nitrogênio/metabolismo , Saccharomycetales/genética , Zygosaccharomyces/classificação , Zygosaccharomyces/metabolismo
3.
J Gen Appl Microbiol ; 66(3): 175-180, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31495807

RESUMO

Mating is a promising breeding method for industrial yeast. Although sake yeast has a low spore-formation ability, segregants exhibiting a mating type have been isolated from sake yeast K7. Here, we constructed zygotes from a cross between those segregants and a laboratory yeast strain. Because most sake and brewing yeast strains are prototrophs, we developed a PCR-based method to confirm that mating had taken place based on genome sequencing data and differences in nucleotide sequences between the two parental strains. The mated strain, termed S. cerevisiae MITOY123, showed restored spore-formation ability, unlike most sake and brewing yeast strains. By using the mated yeast strain MITOY123, it was possible to carry out tetrad analysis for the trait of the absence of off-flavour due to phenolic products such as 4-vinylguiacol (4-VG) in sake yeast K7. This tetrad analysis indicated that a single genetic region around the gene PAD1 is responsible for the absence of phenolic off-flavour in sake yeast K7. In order to aid the breeding of sake and brewing yeast strains by mating, we also identified a restriction fragment length polymorphism (RFLP) marker for the absence of phenolic off-flavour production in strains derived from sake yeast K7. Collectively, our data show that it is possible to breed new sake and brewing yeast strains by mating and to test for the absence of phenolic off-flavour production in resultant strains easily by RFLP analysis.


Assuntos
Bebidas Alcoólicas/microbiologia , Guaiacol/análogos & derivados , Polimorfismo de Fragmento de Restrição , Saccharomyces cerevisiae/genética , Paladar , Carboxiliases/genética , Cruzamentos Genéticos , Fermentação , Genoma Fúngico , Guaiacol/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/fisiologia
4.
J Gen Appl Microbiol ; 64(3): 127-135, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-29607877

RESUMO

Variations of chromosomal structures and nucleotide sequences around mating-type-like (MTL) loci among Zygosaccharomyces species have been reported. We have analyzed these differences in more detail and, on the basis of PCR- and next-generation sequencing data, we describe the MTL loci on chromosomes C and F for Z. rouxii type-strain NBRC1130, Z. rouxii NBRC0740 and Zygosaccharomyces sp. NBRC1876. We developed a mating strategy for Zygosaccharomyces sp. NBRC1876 and Z. rouxii NBRC0740, and found that the mated stains could be identified from parental strains on the basis of nucleotide sequence variations of the MTL loci. We further obtained evidence that Zygosaccharomyces sp. NBRC1876 is a natural interspecies hybrid between Z. rouxii and a related species.


Assuntos
Loci Gênicos/genética , Variação Genética , Reação em Cadeia da Polimerase , Zygosaccharomyces/classificação , Zygosaccharomyces/genética , Mapeamento Cromossômico , DNA Fúngico/genética , Genoma Fúngico/genética , Especificidade da Espécie , Zygosaccharomyces/isolamento & purificação
5.
Yeast ; 29(11): 487-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23065862

RESUMO

When exponentially growing cells of bottom-fermenting yeast were starved for nitrogen or were grown on proline (a non-preferred nitrogen source), flocculation was induced. This flocculation was not induced by starvation for either carbon or amino acids. Expression of Lg-FLO1, which is required for flocculation of bottom-fermenting yeast, was also found to be induced by starvation for nitrogen. This suggests that the flocculation of bottom-fermenting yeast is under the control of a nitrogen catabolite repression (NCR)-like mechanism.


Assuntos
Adesão Celular , Regulação Fúngica da Expressão Gênica , Lectinas de Ligação a Manose/biossíntese , Nitrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Fermentação , Floculação , Prolina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
6.
Yeast ; 29(5): 155-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22576669

RESUMO

The bottom-fermenting lager yeast Saccharomyces pastorianus has been proposed to be allotetraploid, containing two S. cerevisiae (Sc)-type and two S. bayanus (Sb)-type chromosomes. This chromosomal constitution likely explains why recessive mutants of S. pastorianus have not previously been reported. Here we describe the construction of a ura3 deletion strain derived from the lager strain Weihenstephan34/70 by targeted transformation and subsequent loss of heterozygosity (LOH). Initially, deletion constructs of the Sc and Sb types of URA3 were constructed in laboratory yeast strains in which a TDH3p-hygro allele conferring hygromycin B resistance replaced ScURA3 and a KanMX cassette conferring G-418 resistance replaced SbURA3. The lager strain was then transformed with these constructs to yield a heterozygous URA3 disruptant (ScURA3⁺/Scura3Δ::TDH3p-hygro, SbURA3⁺/Sbura3Δ::KanMX), which was plated on 5-fluoroorotic acid (5-FOA) plates to generate the desired Ura⁻ homozygous disruptant (Scura3Δ::TDH3p-hygro/Scura3Δ::TDH3p-hygro Sbura3Δ::KanMX/Sbura3Δ::KanMX) through LOH. This ura3 deletion strain was then used to construct a bottom-fermenting yeast transformant overexpressing ATF1 that encodes an enzyme that produces acetate esters. The ATF1-overexpressing transformant produced significantly more acetate esters than the parent strain. The constructed ura3∆ lager strain will be a useful host for constructing strains of relevance to brewing.


Assuntos
Proteínas Fúngicas/genética , Poliploidia , Saccharomyces/genética , Deleção de Sequência , Cromossomos Fúngicos/genética , Fermentação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Saccharomyces/metabolismo
7.
DNA Res ; 18(6): 423-34, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900213

RESUMO

The term 'sake yeast' is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Inversão Cromossômica , Cromossomos Fúngicos , Genes Fúngicos , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Saccharomyces cerevisiae/classificação , Análise de Sequência de DNA
8.
J Gen Appl Microbiol ; 56(4): 297-312, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20953094

RESUMO

Variants of bottom-fermenting brewer's yeast that grew at high temperatures and showed poor proliferation and fermentation at low temperatures were isolated. Similar variants of laboratory yeast were also isolated and found to be incapable of mating. The KEX2 gene was cloned by complementation. It was shown to be responsible for these traits, because a KEX2 disruptant of Saccharomyces cerevisiae (S. cerevisiae) laboratory yeast grew poorly at low temperatures and was resistant to high temperatures. In addition, a Saccharomyces bayanus (S. bayanus)-type KEX2 (Sb-KEX2) disruptant of bottom-fermenting brewer's yeast grew poorly at low temperatures and was resistant to high temperatures. The KEX2 gene product plays an important role in proliferation of yeast at low temperatures, which is an important trait of bottom-fermenting brewer's yeast. These findings advance our understanding of the proliferation of yeast at low temperatures, especially that of bottom-fermenting brewer's yeast.


Assuntos
Pró-Proteína Convertases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Temperatura Baixa , Fermentação , Temperatura Alta , Pró-Proteína Convertases/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Biosci Biotechnol Biochem ; 73(8): 1880-2, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19661712

RESUMO

To determine whether two HorC molecules coordinately form a single unit, the functional properties of covalently linked dimers of HorC encoded by tandemly fused horC genes were studied. Lactobacillus brevis introduced with the fused horC genes and a single horC gene exhibited same degree of resistance to hop compounds and cetyltrimethylammonium bromide. This suggests that HorC functions as a homodimer.


Assuntos
Proteínas de Bactérias/metabolismo , Cerveja/microbiologia , Multimerização Proteica , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cetrimônio , Compostos de Cetrimônio/farmacologia , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Humanos , Estrutura Quaternária de Proteína
10.
J Biosci Bioeng ; 108(2): 124-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19619859

RESUMO

We evaluated a microcolony method for the detection and identification of beer-spoilage lactic acid bacteria (LAB). In this approach, bacterial cells were trapped on a polycarbonate membrane filter and cultured on ABD medium, a medium that allows highly specific detection of beer-spoilage LAB strains. After short-time incubation, viable cells forming microcolonies were stained with carboxyfluorescein diacetate (CFDA) and counted with muFinder Inspection System. In our study, we first investigated the growth behavior of various beer-spoilage LAB by traditional culture method, and Lactobacillus lindneri and several L. paracollinoides strains were selected as slow growers on ABD medium. Then the detection speeds were evaluated by microcolony method, using these slowly growing strains. As a result, all of the slowly growing beer-spoilage LAB strains were detected within 3 days of incubation. The specificity of this method was found to be exceptionally high and even discriminated intra-species differences in beer-spoilage ability of LAB strains upon detection. These results indicate that our microcolony approach allows rapid and specific detection of beer-spoilage LAB strains with inexpensive CFDA staining. For further confirmation of species status of detected strains, subsequent treatment with species-specific fluorescence in situ hybridization (FISH) probes was shown as effective for identifying the CFDA-detected microcolonies to the species level. In addition, no false-positive results arising from noise signals were recognized for CFDA staining and FISH methods. Taken together, the developed microcolony method was demonstrated as a rapid and highly specific countermeasure against beer-spoilage LAB, and compared favorably with the conventional culture methods.


Assuntos
Cerveja/microbiologia , Microbiologia de Alimentos , Lactobacillus/isolamento & purificação , Contagem de Colônia Microbiana/métodos , Lactobacillus/crescimento & desenvolvimento
11.
Biosci Biotechnol Biochem ; 72(10): 2764-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18838790

RESUMO

Specific PCR primers were designed based on the 16S rRNA genes of recently proposed beer-spoilage species, Pectinatus haikarae, Megasphaera sueciensis, and M. paucivorans, and two sets of our previously reported multiplex PCR methods for Pectinatus spp. and beer-spoilage cocci were reconstructed. Each modified multiplex PCR method was found specifically to detect beer-spoilage species of Pectinatus and cocci, including new species.


Assuntos
Cerveja , Megasphaera/genética , Pectinatus/genética , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA