RESUMO
The oral cavity is the starting point and an integral part of the respiratory system. Oral bacteria are deeply involved in the onset and aggravation of lower respiratory tract diseases, including aspiration pneumonia, influenza, and chronic obstructive pulmonary disease. Oral health conditions, such as periodontal disease, influence the severity of coronavirus disease 2019 (COVID-19). Oral bacteria can be detected in the respiratory organs of patients with COVID-19, and the composition of oral bacterial flora may be altered. Aspiration pneumonia is common among patients with COVID-19 who are advanced in age or have underlying diseases due to poor oral hygiene management, fever, and other issues. While findings from further studies are awaited, maintaining a healthy oral cavity can prevent COVID-19 onset and aggravation. In addition to routine management of oral microflora at home and maintenance of periodontal health in dentistry, medical-dental collaboration is crucial for a prompt response to future pandemics, as humans have just experienced in COVID-19.
Assuntos
COVID-19 , Saúde Bucal , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Boca/microbiologia , Higiene Bucal , Pandemias/prevenção & controle , Doenças Periodontais/complicações , Doenças Periodontais/prevenção & controle , Doenças Periodontais/terapia , Pneumonia Aspirativa/prevenção & controleRESUMO
During the perinatal period, the immune system sets the threshold to select either response or tolerance to environmental Ags, which leads to the potential to provide a lifetime of protection and health. B-1a B cells have been demonstrated to develop during this perinatal time window, showing a unique and restricted BCR repertoire, and these cells play a major role in natural Ab secretion and immune regulation. In the current study, we developed a highly efficient temporally controllable RAG2-based lymphoid lineage cell labeling and tracking system and applied this system to understand the biological properties and contribution of B-1a cells generated at distinct developmental periods to the adult B-1a compartments. This approach revealed that B-1a cells with a history of RAG2 expression during the embryonic and neonatal periods dominate the adult B-1a compartment, including those in the bone marrow (BM), peritoneal cavity, and spleen. Moreover, the BCR repertoire of B-1a cells with a history of RAG2 expression during the embryonic period was restricted, becoming gradually more diverse during the neonatal period, and then heterogeneous at the adult stage. Furthermore, more than half of plasmablasts/plasma cells in the adult BM had embryonic and neonatal RAG2 expression histories. Moreover, BCR analysis revealed a high relatedness between BM plasmablasts/plasma cells and B-1a cells derived from embryonic and neonatal periods, suggesting that these cell types have a common origin. Taken together, these findings define, under native hematopoietic conditions, the importance in adulthood of B-1a cells generated during the perinatal period.
Assuntos
Linhagem da Célula , Proteínas de Ligação a DNA , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linhagem da Célula/imunologia , Linfócitos B/imunologia , Rastreamento de Células/métodos , Receptores de Antígenos de Linfócitos B/imunologia , Subpopulações de Linfócitos B/imunologia , Camundongos Endogâmicos C57BL , HematopoeseRESUMO
G protein-coupled receptors (GPCRs) regulate many cellular processes in response to various stimuli, including light, hormones, neurotransmitters, and odorants, some of which play critical roles in innate and adaptive immune responses. However, the physiological functions of many GPCRs and the involvement of them in autoimmune diseases of the central nervous system remain unclear. Here, we demonstrate that GPR141, an orphan GPCR belonging to the class A receptor family, suppresses immune responses. High GPR141 messenger RNA levels were expressed in myeloid-lineage cells, including neutrophils (CD11b + Gr1+), monocytes (CD11b + Gr1-Ly6C+ and CD11b + Gr1-Ly6C-), macrophages (F4/80+), and dendritic cells (CD11c+). Gpr141 -/- mice, which we independently generated, displayed almost no abnormalities in myeloid cell differentiation and compartmentalization in the spleen and bone marrow under steady-state conditions. However, Gpr141 deficiency exacerbated disease conditions of experimental autoimmune encephalomyelitis, an autoimmune disease model for multiple sclerosis, with increased inflammation in the spinal cord. Gpr141 -/- mice showed increased CD11b + Gr1+ neutrophils, CD11b + Gr1- monocytes, CD11c+ dendritic cells, and CD4+ T cell infiltration into the experimental autoimmune encephalomyelitis-induced spinal cord compared with littermate control mice. Lymphocytes enriched from Gpr141 -/- mice immunized with myelin oligodendrocyte glycoprotein 35-55 produced high amounts of interferon-γ, interleukin-17A, and interleukin-6 compared with those from wild-type mice. Moreover, CD11c+ dendritic cells (DCs) purified from Gpr141 -/- mice increased cytokine production of myelin oligodendrocyte glycoprotein 35-55-specific T cells. These findings suggest that GPR141 functions as a negative regulator of immune responses by controlling the functions of monocytes and dendritic cells and that targeting GPR141 may be a possible therapeutic intervention for modulating chronic inflammatory diseases.
Assuntos
Encefalomielite Autoimune Experimental , Inflamação , Camundongos Knockout , Células Mieloides , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Células Mieloides/metabolismo , Células Mieloides/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de PeptídeosRESUMO
INTRODUCTION: NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS: We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS: We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS: Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor ErbB-2 , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Colorectal cancer (CRC) is the most common malignancy in the world, and novel molecular targeted therapies for CRC have been vigorously pursued. We searched for novel combination therapies based on the expression patterns of membrane proteins in CRC cell lines. RESULTS: A positive correlation was observed between the expression of human pidermal growth factor receptor (HER) 3 and mesenchymal-to-epithelial transition factor (MET) on the cell surface of CRC cell lines. The brief stimulation of HER3/MET-high SW1116 CRC cells with both neuregulin-1 (NRG1) and hepatocyte growth factor enhanced ERK phosphorylation and cell proliferation more than each stimulation alone. In addition, a prolonged NRG1 stimulation resulted in the tyrosine phosphorylation of MET. In this context, the Forkhead Box protein M1 (FOXM1)-regulated tyrosine phosphorylation of MET by NRG1 was demonstrated, suggesting the existence of a signaling pathway mediated by FOXM1 upon the NRG1 stimulation. Since the co-expression of HER3 and MET was also demonstrated in in vivo CRC tissues by immunohistochemistry, we investigated whether the co-inhibition of HER3 and MET could be an effective therapy for CRC. We established HER3-and/or MET-KO SW1116 cell lines, and HER3/MET-double KO resulted in the inhibition of in vitro cell proliferation and in vivo tumor growth in nude mice by SW1116 cells. Furthermore, the combination of patritumab, an anti-HER3 fully human mAb, and PHA665752, a MET inhibitor, markedly inhibited in vitro cell proliferation, 3D-colony formation, and in vivo tumor growth in nude mice by SW1116 cells CONCLUSION: The dual targeting of HER3/MET has potential as CRC therapy.
Assuntos
Neoplasias Colorretais , Humanos , Animais , Camundongos , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transdução de Sinais , Proliferação de Células , TirosinaRESUMO
Human epidermal growth factor receptor (HER) family proteins are currently major targets of therapeutic monoclonal antibodies against various epithelial cancers. However, the resistance of cancer cells to HER family-targeted therapies, which may be caused by cancer heterogeneity and persistent HER phosphorylation, often reduces overall therapeutic effects. We herein showed that a newly discovered molecular complex between CD98 and HER2 affected HER function and cancer cell growth. The immunoprecipitation of the HER2 or HER3 protein from lysates of SKBR3 breast cancer (BrCa) cells revealed the HER2-CD98 or HER3-CD98 complex. The knockdown of CD98 by small interfering RNAs inhibited the phosphorylation of HER2 in SKBR3 cells. A bispecific antibody (BsAb) that recognized the HER2 and CD98 proteins was constructed from a humanized anti-HER2 (SER4) IgG and an anti-CD98 (HBJ127) single chain variable fragment, and this BsAb significantly inhibited the cell growth of SKBR3 cells. Prior to the inhibition of AKT phosphorylation, BsAb inhibited the phosphorylation of HER2, however, significant inhibition of HER2 phosphorylation was not observed in anti-HER2 pertuzumab, trastuzumab, SER4 or anti-CD98 HBJ127 in SKBR3 cells. The dual targeting of HER2 and CD98 has potential as a new therapeutic strategy for BrCa.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/metabolismo , Trastuzumab/uso terapêutico , Anticorpos Monoclonais/metabolismo , Fosforilação , Linhagem Celular TumoralRESUMO
Metastatic progression of tumors is driven by genetic alterations and tumor-stroma interaction. To elucidate the mechanism underlying the oncogene-induced gastric tumor progression, we have developed an organoid-based model of gastric cancer from GAstric Neoplasia (GAN) mice, which express Wnt1 and the enzymes COX2 and microsomal prostaglandin E synthase 1 in the stomach. Both p53 knockout (GAN-p53KO) organoids and KRASG12V -expressing GAN-p53KO (GAN-KP) organoids were generated by genetic manipulation of GAN mouse-derived tumor (GAN wild-type [WT]) organoids. In contrast with GAN-WT and GAN-p53KO organoids, which manifested Wnt addiction, GAN-KP organoids showed a Wnt-independent phenotype and the ability to proliferate without formation of a Wnt-regulated three-dimensional epithelial architecture. After transplantation in syngeneic mouse stomach, GAN-p53KO cells formed only small tumors, whereas GAN-KP cells gave rise to invasive tumors associated with the development of hypoxia as well as to liver metastasis. Spatial transcriptomics analysis suggested that hypoxia signaling contributes to the metastatic progression of GAN-KP tumors. In particular, such analysis identified a cluster of stromal cells located at the tumor invasive front that expressed genes related to hypoxia signaling, angiogenesis, and cell migration. These cells were also positive for phosphorylated extracellular signal-regulated kinase (ERK), suggesting that mitogen-activated protein kinase (MAPK) signaling promotes development of both tumor and microenvironment. The MEK (MAPK kinase) inhibitor trametinib suppressed the development of GAN-KP gastric tumors, formation of a hypoxic microenvironment, tumor angiogenesis, and liver metastasis. Our findings therefore establish a rationale for application of trametinib to suppress metastatic progression of KRAS-mutated gastric cancer.
Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Metástase Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/farmacologia , Piridonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genéticaRESUMO
L-type amino acid transporter 1 (LAT1)/SLC7A5 is the first identified CD98 light chain disulfide linked to the CD98 heavy chain (CD98hc/SLC3A2). LAT1 transports large neutral amino acids, including leucine, which activates mTOR, and is highly expressed in human cancers. We investigated the oncogenicity of human LAT1 introduced to NIH/3T3 cells by retrovirus infection. NIH/3T3 cell lines stably expressing human native (164C) or mutant (164S) LAT1 (naLAT1/3T3 or muLAT1/3T3, respectively) were established. We confirmed that endogenous mouse CD98hc forms a disulfide bond with exogenous human LAT1 in naLAT1/3T3, but not in muLAT1/3T3. Endogenous mouse CD98hc mRNA increased in both naNIH/3T3 and muLAT1/3T3, and a similar amount of exogenous human LAT1 protein was detected in both cell lines. Furthermore, naLAT1/3T3 and muLAT1/3T3 cell lines were evaluated for cell growth-related phenotypes (phosphorylation of ERK, cell-cycle progression) and cell malignancy-related phenotypes (anchorage-independent cell growth, tumor formation in nude mice). naLAT1/3T3 had stronger growth- and malignancy- related phenotypes than NIH/3T3 and muLAT1/3T3, suggesting the oncogenicity of native LAT1 through its interaction with CD98hc. Anti-LAT1 monoclonal antibodies significantly inhibited in vitro cell proliferation and in vivo tumor growth of naLAT1/3T3 cells in nude mice, demonstrating LAT1 to be a promising anti-cancer target.
RESUMO
Copy number alterations detected by comparative genomic hybridization (CGH) can lead to the identification of novel cancer-related genes. We analyzed chromosomal aberrations in a set of 100 human primary colorectal cancers (CRCs) using CGH and found a solute carrier (SLC) 7A1 gene, which encodes cationic amino acid transporter 1 (CAT1) with 14 putative transmembrane domains, in a chromosome region (13q12.3) with a high frequency of gene amplifications. SLC7A1/CAT1 is a transporter responsible for the uptake of cationic amino acids (arginine, lysine, and ornithine) essential for cellular growth. Microarray and PCR analyses have revealed that mRNA transcribed from CAT1 is overexpressed in more than 70% of human CRC samples, and RNA interference-mediated knockdown of CAT1 inhibited the cell growth of CRCs. Rats were immunized with rat hepatoma cells expressing CAT1 tagged with green fluorescent protein (GFP), and rat splenocytes were fused with mouse myeloma cells. Five rat monoclonal antibodies (mAbs) (CA1 ~ CA5) reacting with HEK293 cells expressing CAT1-GFP in a GFP expression-dependent manner were selected from established hybridoma clones. Novel anti-CAT1 mAbs selectively reacted with human CRC tumor tissues compared with adjacent normal tissues according to immuno-histochemical staining and bound strongly to numerous human cancer cell lines by flow cytometry. Anti-CAT1 mAbs exhibited internalization activity, antibody-dependent cellular cytotoxicity, and migration inhibition activity against CRC cell lines. Furthermore, CA2 inhibited the in vivo growth of human HT29 and SW-C4 CRC tumors in nude mice. This study suggested CAT1 to be a promising target for mAb therapy against CRCs.
Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Transportador 1 de Aminoácidos Catiônicos/antagonistas & inibidores , Neoplasias Colorretais/genética , Animais , Transportador 1 de Aminoácidos Catiônicos/genética , Linhagem Celular Tumoral , Amplificação de Genes , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , RatosRESUMO
Death receptor Fas-mediated apoptosis not only eliminates nonspecific and autoreactive B cells but also plays a major role in antitumor immunity. However, the possible mechanisms underlying impairment of Fas-mediated induction of apoptosis during lymphomagenesis remain unknown. In this study, we employed our developed syngeneic lymphoma model to demonstrate that downregulation of Fas is required for both lymphoma development and lymphoma cell survival to evade immune cytotoxicity. CD40 signal activation significantly restored Fas expression and thereby induced apoptosis after Fas ligand treatment in both mouse and human lymphoma cells. Nevertheless, certain human lymphoma cell lines were found to be resistant to Fas-mediated apoptosis, with Livin (melanoma inhibitor of apoptosis protein; ML-IAP) identified as a driver of such resistance. High expression of Livin and low expression of Fas were associated with poor prognosis in patients with aggressive non-Hodgkin's lymphoma. Livin expression was tightly driven by bromodomain and extraterminal (BET) proteins BRD4 and BRD2, suggesting that Livin expression is epigenetically regulated in refractory lymphoma cells to protect them from Fas-mediated apoptosis. Accordingly, the combination of CD40-mediated Fas restoration with targeting of the BET proteins-Livin axis may serve as a promising immunotherapeutic strategy for refractory B-cell lymphoma. SIGNIFICANCE: These findings yield insights into identifying risk factors in refractory lymphoma and provide a promising therapy for tumors resistant to Fas-mediated antitumor immunity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4439/F1.large.jpg.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Proteínas de Neoplasias/imunologia , Receptor fas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Criança , Pré-Escolar , Citotoxicidade Imunológica , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células NIH 3T3 , Proteínas de Neoplasias/genética , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Receptor fas/genética , Receptor fas/metabolismoRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Resistance of progressive cancers against chemotherapy is a serious clinical problem. In this context, human epidermal growth factor receptor 3 (HER3) can play important roles in drug resistance to HER1- and HER2- targeted therapies. Since clinical testing of anti-HER3 monoclonal antibodies (mAbs) such as patritumab could not show remarkable effect compared with existing drugs, we generated novel mAbs against anti-HER3. Novel rat mAbs reacted with HEK293 cells expressing HER3, but not with cells expressing HER1, HER2 or HER4. Specificity of mAbs was substantiated by the loss of mAb binding with knockdown by siRNA and knockout of CRISPR/Cas9-based genome-editing. Analyses of CDR sequence and germline segment have revealed that seven mAbs are classified to four groups, and the binding of patritumab was inhibited by one of seven mAbs. Seven mAbs have shown reactivity with various human epithelial cancer cells, strong internalization activity of cell-surface HER3, and inhibition of NRG1 binding, NRG1-dependent HER3 phosphorylation and cell growth. Anti-HER3 mAbs were also reactive with in vivo tumor tissues and cancer tissue-originated spheroid. Ab4 inhibited in vivo tumor growth of human colon cancer cells in nude mice. Present mAbs may be superior to existing anti-HER3 mAbs and support existing anti-cancer therapeutic mAbs.
RESUMO
The major cellular antioxidant glutathione (GSH) protects cancer cells from oxidative damage that can lead to the induction of ferroptosis, an iron-dependent form of cell death triggered by the aberrant accumulation of lipid peroxides. Inhibitors of the cystine-glutamate antiporter subunit xCT, which mediates the uptake of extracellular cystine and thereby promotes GSH synthesis, are thus potential anticancer agents. However, the efficacy of xCT-targeted therapy has been found to be diminished by metabolic reprogramming that affects redox status in cancer cells. Identification of drugs for combination with xCT inhibitors that are able to overcome resistance to xCT-targeted therapy might thus provide the basis for effective cancer treatment. We have now identified the vasodilator oxyfedrine (OXY) as a sensitizer of cancer cells to GSH-depleting agents including the xCT inhibitor sulfasalazine (SSZ). Oxyfedrine contains a structural motif required for covalent inhibition of aldehyde dehydrogenase (ALDH) enzymes, and combined treatment with OXY and SSZ was found to induce accumulation of the cytotoxic aldehyde 4-hydroxynonenal and cell death in SSZ-resistant cancer cells both in vitro and in vivo. Microarray analysis of tumor xenograft tissue showed cyclooxygenase-2 expression as a potential biomarker for the efficacy of such combination therapy. Furthermore, OXY-mediated ALDH inhibition was found to sensitize cancer cells to GSH depletion induced by radiation therapy in vitro. Our findings thus establish a rationale for repurposing of OXY as a sensitizing drug for cancer treatment with agents that induce GSH depletion.
Assuntos
Aldeídos/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Oxifedrina/farmacologia , Vasodilatadores/farmacologia , Aldeído Desidrogenase/metabolismo , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sulfassalazina/farmacologiaRESUMO
Targeting the function of membrane transporters in cancer stemlike cells is a potential new therapeutic approach. Cystine-glutamate antiporter xCT expressed in CD44 variant (CD44v)-expressing cancer cells contributes to the resistance to oxidative stress as well as cancer therapy through promoting glutathione (GSH)-mediated antioxidant defense. Amino acid transport by xCT might, thus, be a promising target for cancer treatment, whereas the determination factors for cancer cell sensitivity to xCT-targeted therapy remain unclear. Here, we demonstrate that high expression of xCT and glutamine transporter ASCT2 is correlated with undifferentiated status and diminished along with cell differentiation in head and neck squamous cell carcinoma (HNSCC). The cytotoxicity of the xCT inhibitor sulfasalazine relies on ASCT2-dependent glutamine uptake and glutamate dehydrogenase (GLUD)-mediated α-ketoglutarate (α-KG) production. Metabolome analysis revealed that sulfasalazine treatment triggers the increase of glutamate-derived tricarboxylic acid cycle intermediate α-KG, in addition to the decrease of cysteine and GSH content. Furthermore, ablation of GLUD markedly reduced the sulfasalazine cytotoxicity in CD44v-expressing stemlike HNSCC cells. Thus, xCT inhibition by sulfasalazine leads to the impairment of GSH synthesis and enhancement of mitochondrial metabolism, leading to reactive oxygen species (ROS) generation and, thereby, triggers oxidative damage. Our findings establish a rationale for the use of glutamine metabolism (glutaminolysis)-related genes, including ASCT2 and GLUD, as biomarkers to predict the efficacy of xCT-targeted therapy for heterogeneous HNSCC tumors.
Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Glutationa/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Glutamato Desidrogenase/metabolismo , Glutamina/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Receptores de Hialuronatos/análise , Receptores de Hialuronatos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metaboloma , Camundongos , Camundongos Nus , Antígenos de Histocompatibilidade Menor/genética , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , RNA Mensageiro/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Sulfassalazina/farmacologiaRESUMO
Pulmonary arterial hypertension (PAH) pathogenesis shares similarities with carcinogenesis. One CD44 variant (CD44v) isoform, CD44v8-10, binds to and stabilizes the cystine transporter subunit (xCT), producing reduced glutathione and thereby enhancing the antioxidant defense of cancer stem cells. Pharmacological inhibition of xCT by sulfasalazine suppresses tumor growth, survival, and resistance to chemotherapy. We investigated whether the CD44v-xCT axis contributes to PAH pathogenesis. CD44v was predominantly expressed on endothelial-to-mesenchymal transition (EndMT)-like cells in the neointimal layer of PAH affected pulmonary arterioles. In vitro, CD44 standard form and CD44v were induced as a result of EndMT. Among human pulmonary artery endothelial cells that have undergone EndMT, CD44v+ cells showed high levels of xCT expression on their cell surfaces and high concentrations of glutathione for survival. This made CD44v+ cells the most vulnerable target for sulfasalazine. CD44v+xCThi cells showed the highest expression levels of proinflammatory cytokines, antioxidant enzymes, antiapoptotic molecules, and cyclin-dependent kinase inhibitors. In the Sugen5416/hypoxia mouse model, CD44v+ cells were present in the thickened pulmonary vascular wall. The administration of sulfasalazine started either at the same time as "Sugen5416" administration (a prevention model) or after the development of pulmonary hypertension (a reversal model) attenuated the muscularization of the pulmonary vessels, decreased the expression of markers of inflammation, and reduced the right ventricular systolic pressure, while reducing CD44v+ cells. In conclusion, CD44v+xCThi cells appear during EndMT and in pulmonary hypertension tissues. Sulfasalazine is expected to be a novel therapeutic agent for PAH, most likely targeting EndMT-derived CD44v+xCThi cells.
Assuntos
Células Endoteliais/metabolismo , Receptores de Hialuronatos/metabolismo , Hipertensão Pulmonar/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Camundongos , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , SulfassalazinaRESUMO
The prognostic role of CD44v9, a variant isoform of CD44 and a new cell surface marker of cancer stem cells, remains unclear in bladder cancer (BC) patients. Furthermore, limited information is available on the functional role of sulfasalazine (SSZ), which could modulate the CD44v9-xCT system in order to enhance cisplatin (CDDP)-induced cytotoxicity and inhibit the metastatic potential of BC. CD44v9 protein expression was examined immunohistochemically in 63 muscle invasive BC (MIBC) patients who underwent radical cystectomy. CD44v9 expression was independently associated with disease recurrence and cancer-specific death in MIBC. Cytotoxic effects, glutathione levels, and reactive oxygen species production by SSZ and CD44v9 and phospho-p38MAPK protein expression by SSZ with or without CDDP were assessed in MBT-2V cells with highly metastatic potential. Sulfasalazine exerted cytotoxic effects against MBT-2V cells by inhibiting glutathione levels and inducing the production of reactive oxygen species. Sulfasalazine in combination with CDDP appeared to exert strong cytotoxic effects against MBT-2V cells by inhibiting CD44v9 expression and upregulating phospho-p38MAPK expression. The inhibitory effects of SSZ with or without CDDP were also investigated using an MBT-2V lung metastatic model. In the murine lung metastatic BC model, SSZ significantly prolonged animal survival. Furthermore, the combination of SSZ with CDDP exerted stronger inhibitory effects on the establishment of lung tumor nodules than SSZ or CDDP alone. CD44v9 expression could be a clinical biomarker for predicting poor outcomes in MIBC patients. Sulfasalazine in combination with CDDP has potential as a novel therapy against metastatic BC.
Assuntos
Cisplatino/uso terapêutico , Receptores de Hialuronatos/metabolismo , Sulfassalazina/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Recidiva , Sulfassalazina/farmacologia , Resultado do Tratamento , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The spleen is comprised of spatially distinct compartments whose functions, such as immune responses and removal of aged red blood cells, are tightly controlled by the non-hematopoietic stromal cells that provide regionally-restricted signals to properly activate hematopoietic cells residing in each area. However, information regarding the ontogeny and relationships of the different stromal cell types remains limited. Here we have used in vivo lineage tracing analysis and in vitro mesenchymal stromal cell assays and found that Tlx1, a transcription factor essential for embryonic spleen organogenesis, marks neonatal stromal cells that are selectively localized in the spleen and retain mesenchymal progenitor potential to differentiate into mature follicular dendritic cells, fibroblastic reticular cells and marginal reticular cells. Furthermore, by establishing a novel three-dimensional cell culture system that enables maintenance of Tlx1-expressing cells in vitro, we discovered that signals from the lymphotoxin ß receptor and TNF receptor promote differentiation of these cells to express MAdCAM-1, CCL19 and CXCL13, representative functional molecules expressed by different subsets of mature stromal cells in the spleen. Taken together, these findings indicate that mesenchymal progenitor cells expressing Tlx1 are a subset of lymphoid tissue organizer-like cells selectively found in the neonatal spleen.
Assuntos
Proteínas de Homeodomínio/metabolismo , Tecido Linfoide/metabolismo , Células-Tronco Mesenquimais/metabolismo , Baço/metabolismo , Células Estromais/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Regulação da Expressão Gênica , CamundongosRESUMO
L-Type amino acid transporter 1 (LAT1) disulfide linked to CD98 heavy chain (hc) is highly expressed in most cancer cells, but weakly expressed in normal cells. In the present study, we developed novel anti-LAT1 mAbs and showed internalization activity, inhibitory effects of amino acid uptake and cell growth and antibody-dependent cellular cytotoxicity, as well as in vivo antitumor effects in athymic mice. Furthermore, we examined the reactivity of mAbs with LAT1 of Macaca fascicularis to evaluate possible side-effects of antihuman LAT1 mAbs in clinical trials. Antihuman LAT1 mAbs reacted with ACHN human and MK.P3 macaca kidney-derived cells, and this reactivity was significantly decreased by siRNAs against LAT1. Macaca LAT1 cDNA was cloned from MK.P3, and only two amino acid differences between human and macaca LAT1 were seen. RH7777 rat hepatoma and HEK293 human embryonic kidney cells expressing macaca LAT1 were established as stable transfectants, and antihuman LAT1 mAbs were equivalently reactive against transfectants expressing human or macaca LAT1. Dual (high and low) avidity modes were detected in transfectants expressing macaca LAT1, MK.P3, ACHN and HCT116 human colon cancer cells, and KA values were increased by anti-CD98hc mAb, suggesting anti-LAT1 mAbs detect an epitope on LAT1-CD98hc complexes on the cell surface. Based on these results, LAT1 may be a promising anticancer target and Macaca fascicularis can be used in preclinical studies with antihuman LAT1 mAbs.
Assuntos
Anticorpos Monoclonais/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Células A549 , Aminoácidos/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Células HEK293 , Haplorrinos , Células HeLa , Humanos , Macaca fascicularis , Camundongos , Camundongos Nus , Ratos , Ratos Endogâmicos F344RESUMO
The cystine-glutamate antiporter subunit xCT suppresses iron-dependent oxidative cell death (ferroptosis) and is therefore a promising target for cancer treatment. Given that cancer cells often show resistance to xCT inhibition resulting in glutathione (GSH) deficiency, however, we here performed a synthetic lethal screen of a drug library to identify agents that sensitize the GSH deficiency-resistant cancer cells to the xCT inhibitor sulfasalazine. This screen identified the oral anesthetic dyclonine which has been recently reported to act as a covalent inhibitor for aldehyde dehydrogenases (ALDHs). Treatment with dyclonine induced intracellular accumulation of the toxic aldehyde 4-hydroxynonenal in a cooperative manner with sulfasalazine. Sulfasalazine-resistant head and neck squamous cell carcinoma (HNSCC) cells were found to highly express ALDH3A1 and knockdown of ALDH3A1 rendered these cells sensitive to sulfasalazine. The combination of dyclonine and sulfasalazine cooperatively suppressed the growth of highly ALDH3A1-expressing HNSCC or gastric tumors that were resistant to sulfasalazine monotherapy. Our findings establish a rationale for application of dyclonine as a sensitizer to xCT-targeted cancer therapy.
RESUMO
Autocrine and paracrine factors, including glutamate and epidermal growth factor (EGF), are potent inducers of brain tumor cell invasion, a pathological hallmark of malignant gliomas. System xc(-) consists of xCT and CD98hc subunits and functions as a plasma membrane antiporter for the uptake of extracellular cystine in exchange for intracellular glutamate. We previously showed that the EGF receptor (EGFR) interacts with xCT and thereby promotes the activity of system xc(-) in a kinase-independent manner, resulting in enhanced glutamate release in glioma cells. However, the molecular mechanism underlying EGFR-mediated glioma progression in a glutamate-rich microenvironment has remained unclear. Here we show that the GluN2B subunit of the N-methyl-d-aspartate-sensitive glutamate receptor (NMDAR) is a substrate of EGFR in glioma cells. In response to EGF stimulation, EGFR phosphorylated the COOH-terminal domain of GluN2B and thereby enhanced glutamate-NMDAR signaling and consequent cell migration in EGFR-overexpressing glioma cells. Treatment with the NMDAR inhibitor MK-801 or the system xc(-) inhibitor sulfasalazine suppressed EGF-elicited glioma cell migration. The administration of sulfasalazine and MK-801 also synergistically suppressed the growth of subcutaneous tumors formed by EGFR-overexpressing glioma cells. Furthermore, shRNA-mediated knockdown of xCT and GluN2B cooperatively prolonged the survival of mice injected intracerebrally with such glioma cells. Our findings thus establish a central role for EGFR in the signaling crosstalk between xCT and GluN2B-containing NMDAR in glioma cells.