Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148645

RESUMO

Fluorescence microscopy is the method of choice in biology for its molecular specificity and super-resolution capabilities. However, it is limited to a narrow z range around one observation plane. Here, we report an imaging approach that recovers the full electric field of fluorescent light with single-molecule sensitivity. We expand the principle of digital holography to fast fluorescent detection by eliminating the need for phase cycling and enable three-dimensional (3D) tracking of individual nanoparticles with an in-plane resolution of 15 nm and a z-range of 8 mm. As a proof-of-concept biological application, we image the 3D motion of extracellular vesicles (EVs) inside live cells. At short time scales (<4 s), we resolve near-isotropic 3D diffusion and directional transport. For longer lag times, we observe a transition toward anisotropic motion with the EVs being transported over long distances in the axial plane while being confined in the horizontal dimension.

2.
ACS Appl Mater Interfaces ; 11(9): 9083-9092, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735027

RESUMO

To bring hybrid lead halide perovskite solar cells toward the Shockley-Queisser limit requires lowering the band gap while simultaneously increasing the open-circuit voltage. This, to some extent divergent objective, may demand the use of large cations to obtain a perovskite with larger lattice parameter together with a large crystal size to minimize interface nonradiative recombination. When applying the two-step method for a better crystal control, it is rather challenging to fabricate perovskites with FA+ cations, given the small penetration depth of such large ions into a compact PbI2 film. In here, to successfully incorporate such large cations, we used a high-concentration solution of the organic precursor containing small Cl- anions achieving, via a solvent annealing-controlled dissolution-recrystallization, larger than 1 µm perovskite crystals in a solar cell. This solar cell, with a largely increased fluorescence quantum yield, exhibited an open-circuit voltage equivalent to 93% of the corresponding radiative limit one. This, together with the low band gap achieved (1.53 eV), makes the fabricated perovskite cell one of the closest to the Shockley-Queisser optimum.

3.
ACS Appl Mater Interfaces ; 10(49): 43230-43235, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30444107

RESUMO

Oleophobic surfaces have been so far realized using complex microscale and nanoscale re-entrant geometries, where primary and secondary structures or overhang geometries are typically required. Here, we propose a new design to create them with noninteracting cavities. The suspension of liquid droplets relies on the mechanism of compression of air under the meniscus leading to stable composite oil-air-solid interfaces. To demonstrate the concept, we make oleophobic surfaces, with contact angle for oleic acid of about 130° (and hexadecane about 110°), using both microholes in silicon and nanoholes in glass. Thanks to the subwavelength dimensions and antireflection effect of the nanoholes, the glass substrate also shows a high degree of optical transparency with optical transmission exceeding that of the initial bare substrate. Crockmeter tests without any significant change in morphology, optical and wetting properties after more than 500 passes also confirm the high mechanical durability of the nanohole surface. The results indicate the possibility of using the proposed oleophobic surfaces for a wide range of applications, including self-cleaning transparent windows and windshields for automobiles and aircrafts.

4.
Nanoscale ; 10(37): 17884-17892, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30221647

RESUMO

The ideal nanofabrication technique is one that allows the mass production of high resolution submicrometric features in a cost efficient and environmentally friendly fashion. A great step towards achieving this goal has been the development of nanoimprinting lithography, a procedure with tenths of nanometres resolution while being compatible with roll-to-roll manufacturing. However, an ecofriendly resist that can be efficiently combined with this process is still missing. In this work, we demonstrate the use of hydroxypropyl cellulose (HPC) as a biocompatible, biodegradable, and water processable resist for temperature assisted nanoimprint lithography (tNIL) by fabricating different photonic architectures. The cellulose derivative is easily patterned with submicrometric features with aspect ratios greater than 1 using an elastomeric stamp and a hot plate. Silicon photonic crystals and metal nanoparticle arrays are fabricated combining cellulose with traditional nanofrabrication processes such as spincasting, reactive ion etching and metal lift off. Furthermore, advanced nanofabrication possibilities are within reach by combining the HPC with traditional resists. In particular, poly(methyl methacrylate) and HPC stacks are easily produced by liquid phase processing, where one of the two materials can be selectively removed by developing in orthogonal solvents. This capability becomes even more interesting by including nanoimprinted layers in the stack, leading to the encapsulation of arrays of air features in the resist.

5.
Science ; 360(6386): 291-295, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29674587

RESUMO

The ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing, and nanoscale lasers. Although plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between optical field confinement and losses. We show that a graphene-insulator-metal heterostructure can overcome that trade-off, and demonstrate plasmon confinement down to the ultimate limit of the length scale of one atom. This is achieved through far-field excitation of plasmon modes squeezed into an atomically thin hexagonal boron nitride dielectric spacer between graphene and metal rods. A theoretical model that takes into account the nonlocal optical response of both graphene and metal is used to describe the results. These ultraconfined plasmonic modes, addressed with far-field light excitation, enable a route to new regimes of ultrastrong light-matter interactions.

6.
Nat Mater ; 14(10): 991-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213898

RESUMO

The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

7.
Nanotechnology ; 24(33): 335302, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23892266

RESUMO

Silicon metal-assisted chemical etching (MACE) is a nanostructuring technique exploiting the enhancement of the silicon etch rate at some metal-silicon interfaces. Compared to more traditional approaches, MACE is a high-throughput technique, and it is one of the few that enables the growth of vertical 1D structures of virtually unlimited length. As such, it has already found relevant technological applications in fields ranging from energy conversion to biosensing. Yet, its implementation has always required metal patterning to obtain nanopillars. Here, we report how MACE may lead to the formation of porous silicon nanopillars even in the absence of gold patterning. We show how the use of inhomogeneous yet continuous gold layers leads to the generation of a stress field causing spontaneous local delamination of the metal-and to the formation of silicon nanopillars where the metal disruption occurs. We observed the spontaneous formation of nanopillars with diameters ranging from 40 to 65 nm and heights up to 1 µm. Strain-controlled generation of nanopillars is consistent with a mechanism of silicon oxidation by hole injection through the metal layer. Spontaneous nanopillar formation could enable applications of this method to contexts where ordered distributions of nanopillars are not required, while patterning by high-resolution techniques is either impractical or unaffordable.

8.
Nature ; 487(7405): 77-81, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22722861

RESUMO

The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons­coupled excitations of photons and charge carriers­in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short­more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light­matter interactions for quantum devices and biosensing applications.

9.
Nat Nanotechnol ; 7(6): 363-8, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22562036

RESUMO

Graphene is an attractive material for optoelectronics and photodetection applications because it offers a broad spectral bandwidth and fast response times. However, weak light absorption and the absence of a gain mechanism that can generate multiple charge carriers from one incident photon have limited the responsivity of graphene-based photodetectors to ∼10(-2) A W(-1). Here, we demonstrate a gain of ∼10(8) electrons per photon and a responsivity of ∼10(7) A W(-1) in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots. Strong and tunable light absorption in the quantum-dot layer creates electric charges that are transferred to the graphene, where they recirculate many times due to the high charge mobility of graphene and long trapped-charge lifetimes in the quantum-dot layer. The device, with a specific detectivity of 7 × 10(13) Jones, benefits from gate-tunable sensitivity and speed, spectral selectivity from the short-wavelength infrared to the visible, and compatibility with current circuit technologies.


Assuntos
Elétrons , Grafite/química , Fótons , Pontos Quânticos
10.
Lab Chip ; 12(11): 1987-94, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22538502

RESUMO

One of the main limitations for achieving truly lab-on-a-chip (LOC) devices for point-of-care diagnosis is the incorporation of the "on-chip" detection. Indeed, most of the state-of-the-art LOC devices usually require complex read-out instrumentation, losing the main advantages of portability and simplicity. In this context, we present our last advances towards the achievement of a portable and label-free LOC platform with highly sensitive "on-chip" detection by using nanophotonic biosensors. Bimodal waveguide interferometers fabricated by standard silicon processes have been integrated with sub-micronic grating couplers for efficient light in-coupling, showing a phase resolution of 6.6 × 10(-4)× 2π rad and a limit of detection of 3.3 × 10(-7) refractive index unit (RIU) in bulk. A 3D network of SU-8 polymer microfluidics monolithically assembled at the wafer-level was included, ensuring perfect sealing and compact packaging. To overcome some of the drawbacks inherent to interferometric read-outs, a novel all-optical wavelength modulation system has been implemented, providing a linear response and a direct read-out of the phase variation. Sensitivity, specificity and reproducibility of the wavelength modulated BiMW sensor has been demonstrated through the label-free immunodetection of the human hormone hTSH at picomolar level using a reliable biofunctionalization process.


Assuntos
Interferometria/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Óptica e Fotônica/instrumentação , Anticorpos/imunologia , Técnicas Biossensoriais , Humanos , Interferometria/métodos , Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia/métodos , Óptica e Fotônica/métodos , Refratometria , Tireotropina/análise , Tireotropina/imunologia
11.
Opt Express ; 20(2): 1096-101, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22274455

RESUMO

We report on lateral pin germanium photodetectors selectively grown at the end of silicon waveguides. A very high optical bandwidth, estimated up to 120GHz, was evidenced in 10 µm long Ge photodetectors using three kinds of experimental set-ups. In addition, a responsivity of 0.8 A/W at 1550 nm was measured. An open eye diagrams at 40Gb/s were demonstrated under zero-bias at a wavelength of 1.55 µm.


Assuntos
Eletrônica/instrumentação , Germânio/química , Microscopia de Força Atômica/instrumentação , Óptica e Fotônica/instrumentação , Silício/química
12.
Nanoscale Res Lett ; 5(12): 1921-1925, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21170398

RESUMO

The ordered growth of self-assembled SiGe islands by surface thermal diffusion in ultra high vacuum from a lithographically etched Ge stripe on pit-patterned Si(100) surface has been experimentally investigated. The total surface coverage of Ge strongly depends on the distance from the source stripe, as quantitatively verified by Scanning Auger Microscopy. The size distribution of the islands as a function of the Ge coverage has been studied by coupling atomic force microscopy scans with Auger spectro-microscopy data. Our observations are consistent with a physical scenario where island positioning is essentially driven by energetic factors, which predominate with respect to the local kinetics of diffusion, and the growth evolution mainly depends on the local density of Ge atoms.

13.
Opt Lett ; 35(17): 2913-5, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20808367

RESUMO

We investigate the room-temperature quantum-confined Stark effect in Ge/SiGe multiple quantum wells (MQWs) grown by low-energy plasma-enhanced chemical vapor deposition. The active region is embedded in a p-i-n diode, and absorption spectra at different reverse bias voltages are obtained from optical transmission, photocurrent, and differential transmission measurements. The measurements provide accurate values of the fraction of light absorbed per well of the Ge/SiGe MQWs. Both Stark shift and reduction of exciton absorption peak are observed. Differential transmission indicates that there is no thermal contribution to these effects.

14.
Opt Express ; 17(8): 6252-7, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19365450

RESUMO

A compact pin Ge photodetector is integrated in submicron SOI rib waveguide. The detector length is reduced down to 15 microm using butt coupling configuration which is sufficient to totally absorb light at the wavelength of 1.55 microm. A -3 dB bandwidth of 42 GHz has been measured at a 4V reverse bias with a responsivity as high as 1 A/W at the wavelength of 1.55 microm and a low dark current density of 60 mA/cm(2). At a wavelength of 1.52 microm, a responsivity of 1 A/W is obtained under -0.5 V bias. The process is fully compatible with CMOS technology.


Assuntos
Germânio/efeitos da radiação , Dispositivos Ópticos , Fotometria/instrumentação , Silício/química , Transdutores , Desenho Assistido por Computador , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Appl Opt ; 43(19): 3854-65, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15250552

RESUMO

The diffraction effects induced by a thick holographic grating on the propagation of a finite Gaussian beam are theoretically analyzed by means of the coupled-wave theory and the beam propagation method. Distortion of the transmitted and diffracted beams is simulated as a function of the grating parameters. Theoretical results are verified by experimentation realized by use of LiNbO3 volume gratings read out by a 1550-nm Gaussian beam, typical of optical fiber communications. This analysis can be implemented as a useful tool to aid with the design of volume grating-based devices employed in optical communications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA