Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(19): 12889-12905, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37114032

RESUMO

c-Met tyrosine kinase plays a key role in the oncogenic process. Inhibition of the c-Met has emerged as an attractive target for human cancer treatment. This work deals with the design and synthesis of a new set of derivatives bearing pyrazolo[3,4-b]pyridine, pyrazolo[3,4-b]thieno[3,2-e]pyridine, and pyrazolo[3,4-d]thiazole-5-thione scaffolds, 5a,b, 8a-f, and 10a,b, respectively, utilizing 3-methyl-1-tosyl-1H-pyrazol-5(4H)-one (1) as a key starting material. All the new compounds were evaluated as antiproliferative agents against HepG-2, MCF-7, and HCT-116 human cancer cell lines utilizing 5-fluorouracil and erlotinib as two standard drugs. Compounds 5a,b and 10a,b represented the most promising cytotoxic activity of IC50 values ranging from 3.42 ± 1.31 to 17.16 ± 0.37 µM. Both 5a and 5b showed the most cytotoxicity and selectivity toward HepG-2, with IC50 values of 3.42 ± 1.31 µM and 3.56 ± 1.5 µM, respectively. The enzyme assay demonstrated that 5a and 5b had inhibition potency on c-Met with IC50 values in nanomolar range of 4.27 ± 0.31 and 7.95 ± 0.17 nM, respectively in comparison with the reference drug cabozantinib (IC50; 5.38 ± 0.35 nM). The impact of 5a on the cell cycle and apoptosis induction potential in HepG-2 and on the apoptotic parameters; Bax, Bcl-2, p53, and caspase-3 was also investigated. Finally, the molecular docking simulation of the most promising derivatives 5a and 5b was screened against c-Met to investigate the binding patterns of both compounds in the active site of the c-Met enzyme. In silico ADME studies were also performed for 5a and 5b to predict their physicochemical and pharmacokinetic characteristics.

2.
Bioorg Chem ; 127: 105964, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35759881

RESUMO

Multitargeting kinase inhibitors recently proved to be a profitable approach for conquering cancer proliferation. The current study represents the design and synthesis of new thiophene, thienopyridine, and thiazoline-based derivatives 4-14a,b. All the target compounds were examined in vitro against three cancer cell lines; the liver (HepG-2), breast (MCF-7), and colon (HCT-116) where the thiophene-based compounds 5a-c, demonstrated the most potent activity. Furthermore, the latter derivatives revealed a safety profile against WI-38 normal cell line of selectivity indices ranging from 4.43 to 17.44. In vitro enzyme assay of 5a-c revealed that the carbohydrazide analog 5c has the most promising multitargeting inhibiting activity against Pim-1, VEGFR-2, and EGFRWT enzymes of IC50 values; 0.037 ± 0.02, 0.95 ± 0.24, and 0.16 ± 0.05 µM, respectively. As it was the most potent analog, 5c was further subjected to cell cycle and apoptosis analysis. The results indicated that it induced preG1 arrest and an apoptotic effect in the early and late stages. Moreover, further apoptosis studies were carried out for 5c to evaluate its proapoptotic potential. Interestingly, 5c enhanced the levels of Bax/Bcl-2 ratio, p53, and active caspase 3 by 18, 6.4, and 24 folds, respectively compared to the untreated cells. The antimicrobial evaluation showed that only compounds 3 and 5a produced broad-spectrum potency, while 5b and 5c exhibited outstanding antifungal effects. Finally, a molecular docking study was carried out to discover the probable interactions of compound 5c with the active sites of Pim-1, VEGFR-2, and EGFRWT kinases.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Tienopiridinas/farmacologia , Tiofenos/química
3.
Bioorg Chem ; 114: 105078, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34161878

RESUMO

This study was focused on the synthesis of new pyrimidines 4a,b, 5a,b and pyrazoles 6a, b as ATP mimicking tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR). The new compounds were assessed as cytotoxic candidates against human breast cancer cells (MCF-7) and hepatocellular carcinoma cells (HepG-2). All the new compounds appeared as more potent cytotoxic agents than erlotinib, while only compound 4a exhibited more potency than 5-flourouracil and 4b analogue was equipotent to it. Accordingly, the kinase suppression effect of 4a and 4b was further evaluated against EGFRWT, EGFRL858R and EGFRT790M. Both pyrimidine analogues 4a and 4b displayed outstanding inhibitory activity against EGFRWT and its two mutated isoforms EGFRL858R and EGFRT790M in comparing to erlotinib and osimertinib as reference drugs. Additionally, all the new analogues were subjected to antimicrobial assay. Interestingly, both 4a and 4b represented the most promising activity of wide spectrum antimicrobial effect against the examined microbes in comparison to gentamycin and ketoconazole as standard drugs. Moreover, docking results proved the good binding interactions of the compounds 4a and 4b with EGFRWT and EGFRT790M which were in accordance with the results of the in vitro enzyme assay. Additional in silico ADMET studies were performed for the new derivatives which represented their good oral absorption, good drug-likeness properties and low toxicity risks in human.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Aspergillus fumigatus/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mucorales/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteus vulgaris/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Streptococcus/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Bioorg Chem ; 109: 104704, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609915

RESUMO

New substituted pyrazolone and dipyrazolotriazine derivatives have been synthesized, designed and well characterized as promising dual antimicrobial/antioxidant agents to overcome multidrug resistant bacteria (MDR), oxidative stress and their related diseases. Among all strains, S. aureus was found to be the most susceptible for all compounds except 10b and 12b. Out of the three investigated series, sulfonamide analogues 5a-c displayed excellent antibacterial activity with 5b (MIC = 7.61 µM) and 5a (MIC = 8.98 µM) displaying activity that exceeds the reference drug tetracycline (MIC = 11.77 µM). The same sulfonamide derivatives 5a-c demonstrates high ABTS scavenging capacity comparable to standard. Moreover, the structure-activity relationship (SAR) revealed that benzenesulfonamide is a crucial group for enhancing activity. Molecular docking studies of the potent analogues were performed by targeting the crystal structures of S. aureus tyrosyl-tRNA synthetase and human peroxiredoxin-5 enzymes and the obtained results supported well the in vitro data revealing stronger binding interactions. Pharmacokinetics prediction together with modeling outcomes suggests that our sulfonamide derivatives may serve as useful lead compounds for the treatment of infectious disease.


Assuntos
Simulação de Acoplamento Molecular , Peroxirredoxinas/antagonistas & inibidores , Pirazolonas/química , Pirazolonas/farmacologia , Triazinas/farmacologia , Tirosina-tRNA Ligase/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Triazinas/química
5.
RSC Adv ; 12(1): 561-577, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35424523

RESUMO

Deregulation of various protein kinases is considered as one of the important factors resulting in cancer development and metastasis, thus multi-targeting the kinase family is one of the most important strategies in current cancer therapy. This context represents the design and synthesis of two sets of derivatives bearing a pyrazoline-3-one ring conjugated either with a thieno[3,2-d]thiazole or with a dihydrothiazolo[4,5-d]thiazole scaffold via an NH linker, 3a-d and 5a-d respectively, using the pyrazolinone-thiazolinone derivative 1 as a key precursor. All the newly synthesized compounds were assessed in vitro for their anticancer activity against two cancer cell lines (MCF-7 and HepG-2). The safety profile of the most active cytotoxic candidates 1 and 3c was further examined against the normal cell line WI-38. The compounds 1 and 3c were further evaluated as multi-targeting kinase inhibitors against EGFR, VEGFR-2 and BRAFV600E, exhibiting promising suppression impact. Additionally, the latter compounds were investigated for their impact on cell cycle and apoptosis induction potential in the MCF-7 cell line. Moreover, the antimicrobial activity of all the new analogues was evaluated against a panel of Gram-positive and Gram-negative bacteria, yeast and fungi in comparison to streptomycin and amphotericin-B as reference drugs. Interestingly, both 1 and 3c showed the most promising microbial inhibitory effect. Molecular docking studies showed promising binding patterns of the compounds 1 and 3c with the prospective targets, EGFR, VEGFR-2 and BRAFV600E. Finally, additional toxicity studies were performed for the new derivatives which showed their good drug-like properties and low toxicity risks in humans.

6.
J Enzyme Inhib Med Chem ; 35(1): 1491-1502, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32668994

RESUMO

A novel series of pyrazole analogues including hydrazones, pyrazolo[4,3-c]-pyridazines, pyrazolo[3,4-e][1,2,4]triazine and pyrazolo[3,4-d][1,2,3]triazoles was designed, synthesised and screened for their in vitro antimicrobial and DHFR inhibition activity. Compounds bearing benzenesulphonamide moiety incorporated with 3-methyl-5-oxo-1H-pyrazol-4(5H)-ylidene) hydrazine 3a or 6-amino-7-cyano-3-methyl-5H-pyrazolo[4,3-c]pyridazine 6a revealed excellent and broad spectrum antimicrobial activity comparable to ciprofloxacin and amphotericin B as positive antibiotic and antifungal controls, respectively. Furthermore, these derivatives proved to be the most active DHFR inhibitors with IC50 values 0.11 ± 1.05 and 0.09 ± 0.91 µM, in comparison with methotrexate (IC50 = 0.14 ± 1.25 µM). The in silico studies were done to calculate the drug-likeness and toxicity risk parameters of the newly synthesised derivatives. Additionally, the high potency of the pyrazole derivatives bearing sulphonamide against DHFR was confirmed with molecular docking and might be used as an optimum lead for further modification.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Compostos Heterocíclicos/farmacologia , Pirazóis/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Compostos Heterocíclicos/química , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/química , Streptococcus pneumoniae/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Bioorg Chem ; 102: 104105, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32717689

RESUMO

In our effort of discovering new antimicrobial agents, a novel series of imidazo[4,5-b]pyridine-5-thione scaffolds were designed and synthesized and their chemical structures were characterized by physicochemical and spectral analysis. The synthesized compounds were assessed for their in vitro antimicrobial activities against pathogenic microorganisms. Results revealed that out the tested compounds, 3 exhibited the potent inhibitory effect (MIC = 0.49 µg/mL) as compared to the positive control, chloramphenicol (0.98 µg/mL) which predicted also to have the best pharmacokinetic and druglikness properties as well as lower toxicity profiles. Preliminary structure-activity relationships (SARs) study has been also investigated. Moreover, to understand the binding patterns of the tested compounds in the Staphylococcus aureus tyrosyl-tRNA synthetase active site, molecular docking study using the most active compound 3 was carried out. The obtained results indicate that analog 3 can potentially bound to the target enzyme with the highest docking score (-9.37 kcal/mol). Overall, our results showed that antimicrobial activity as well as ADMET and toxicity predictions were in consensus with the docking results.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Staphylococcus aureus/enzimologia , Tirosina-tRNA Ligase/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Relação Estrutura-Atividade , Tionas/síntese química , Tionas/química , Tionas/farmacologia , Tirosina-tRNA Ligase/metabolismo
8.
J Enzyme Inhib Med Chem ; 34(1): 1259-1270, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31287341

RESUMO

Pyrazolylphthalimide derivative 4 was synthesized and reacted with different reagents to afford the target compounds imidazopyrazoles 5-7, pyrazolopyrimidines 9, 12, 14 and pyrazolotriazines 16, 17 containing phthalimide moiety. The prepared compounds were established by different spectral data and elemental analyses. Additionally, all synthesized derivatives were screened for their antibacterial activity against four types of Gram + ve and Gram-ve strains, and for antifungal activity against two fungi micro-organisms by well diffusion method. Moreover, the antiproliferative activity was tested for all compounds against human liver (HepG-2) cell line in comparison with the reference vinblastine. Moreover, drug-likeness and toxicity risk parameters of the newly synthesized compounds were calculated using in silico studies. The data from structure-actvity relationship (SAR) analysis suggested that phthalimide derivative bearing 3-aminopyrazolone moiety, 4 illustrated the best antimicrobial and antitumor activities and might be considered as a lead for further optimization. To investigate the mechanism of the antimicrobial and anticancer activities, enzymatic assay and molecular docking studies were carried out on E. coli topoisomerase II DNA gyrase B and VEGFR-2 enzymes.


Assuntos
Ftalimidas/química , Ftalimidas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ftalimidas/síntese química , Análise Espectral/métodos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA