Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(54): 8444-8447, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37337749

RESUMO

Primary and secondary amines selectively react with the lactone moiety of γ-valerolactone oxide (GVLO). Several primary amines afforded the resulting epoxyamides with an intact epoxy group. In some cases addition of two equivalents of amine resulted in additional epoxide opening to give α,γ-dihydroxy-ß-amino-amides. The selective lactone-opening in GVLO was further corroborated by DFT-studies.

2.
Inorg Chem ; 58(22): 15017-15020, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31674775

RESUMO

The separation of enantiomers is of considerable importance in the preparation of the compounds of biological interests, catalysis, and drug development. Here, we report a novel enantioseparation of styrene epoxides (SOs) resolved in the presence of a pair of enantio-enriched tetrahedral cages. Chiral neutral cages of formula [(Pd3X*)4(C6O4Cl2)6] ([X*]3- = RRR- or SSS-[PO(N(*CH(CH3)Ph)3]3-) are constructed from Pd3 building units supported by tris(imido)phosphate trianions and chloranilate linkers. These cages exhibit considerable enantioselective separation capabilities toward a series of styrene epoxides via a crystallization inclusion method. A highest enantiomeric excess (ee) value of up to 80% is achieved for the (R)-4-fluorostyrene oxide.

3.
J Am Chem Soc ; 140(12): 4430-4439, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29526081

RESUMO

Earth abundant, first row transition metals offer a cheap and sustainable alternative to the rare and precious metals. However, utilization of first row metals in catalysis requires harsh reaction conditions, suffers from limited activity, and fails to tolerate functional groups. Reported here is a highly efficient iron catalyzed hydroformylation of alkenes under mild conditions. This protocol operates at 10-30 bar syngas pressure below 100 °C, utilizes readily available ligands, and applies to an array of olefins. Thus, the iron precursor [HFe(CO)4]-[Ph3PNPPh3]+ (1) in the presence of triphenyl phosphine catalyzes the hydroformylation of 1-hexene (S2), 1-octene (S1), 1-decene (S3), 1-dodecene (S4), 1-octadecene (S5), trimethoxy(vinyl)silane (S6), trimethyl(vinyl)silane (S7), cardanol (S8), 2,3-dihydrofuran (S9), allyl malonic acid (S10), styrene (S11), 4-methylstyrene (S12), 4- iBu-styrene (S13), 4- tBu-styrene (S14), 4-methoxy styrene (S15), 4-acetoxy styrene (S16), 4-bromo styrene (S17), 4-chloro styrene (S18), 4-vinylbenzonitrile (S19), 4-vinylbenzoic acid (S20), and allyl benzene (S21) to corresponding aldehydes in good to excellent yields. Both electron donating and electron withdrawing substituents could be tolerated and excellent conversions were obtained for S11-S20. Remarkably, the addition of 1 mol % acetic acid promotes the reaction to completion within 16-24 h. Detailed mechanistic investigations revealed in situ formation of an iron-dihydride complex [H2Fe(CO)2(PPh3)2] (A) as an active catalytic species. This finding was further supported by cyclic voltammetry investigations and intermediacy of an Fe(0)-Fe(II) species was established. Combined experimental and computational investigations support the existence of an iron-dihydride as the catalyst resting state, which then follows a Fe(II) based catalytic cycle to produce aldehyde.

4.
Chem Commun (Camb) ; 54(15): 1873-1876, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29389000

RESUMO

Charge-neutral chiral hosts are attractive due to their ability to recognize a wide range of guest functionalities and support enantioselective processes. However, reports on such charge-neutral cages are very scarce in the literature. Here, we report an enantiomeric pair of tetrahedral Pd(ii) cages built from chiral tris(imido)phosphate trianions and oxalate linkers, which exhibit enantioselective separation capabilities for epichlorohydrin, ß-butyrolactone, and 3-methyl- and 3-ethyl cyclopentanone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA