Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Sci Learn ; 9(1): 30, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609413

RESUMO

The ability of the brain to extract patterns from the environment and predict future events, known as statistical learning, has been proposed to interact in a competitive manner with prefrontal lobe-related networks and their characteristic cognitive or executive functions. However, it remains unclear whether these cognitive functions also possess a competitive relationship with implicit statistical learning across individuals and at the level of latent executive function components. In order to address this currently unknown aspect, we investigated, in two independent experiments (NStudy1 = 186, NStudy2 = 157), the relationship between implicit statistical learning, measured by the Alternating Serial Reaction Time task, and executive functions, measured by multiple neuropsychological tests. In both studies, a modest, but consistent negative correlation between implicit statistical learning and most executive function measures was observed. Factor analysis further revealed that a factor representing verbal fluency and complex working memory seemed to drive these negative correlations. Thus, the antagonistic relationship between implicit statistical learning and executive functions might specifically be mediated by the updating component of executive functions or/and long-term memory access.

2.
Eur J Neurosci ; 58(4): 3111-3115, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37449939

RESUMO

The serial reaction time task is a widely used task in behavioural and cognitive neuroscience to assess human and animal learning. Many publications refer to this task as a 'motor learning task', but it is also a perceptual learning task. We emphasize here that the incorrect use of the term 'motor learning' misleads researchers and medical doctors by emphasizing the motor cortex's exclusive role. It has the potential to lead to the misinterpretation of neuroscientific, neuroimaging and clinical studies. The domino effect has the potential to generate more flawed hypotheses and theories.


Assuntos
Neurociência Cognitiva , Aprendizagem , Animais , Humanos , Tempo de Reação , Aprendizagem Seriada , Desempenho Psicomotor
3.
Cereb Cortex ; 33(12): 7783-7796, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36944531

RESUMO

Probabilistic sequence learning supports the development of skills and enables predictive processing. It remains contentious whether visuomotor sequence learning is driven by the representation of the visual sequence (perceptual coding) or by the representation of the response sequence (motor coding). Neurotypical adults performed a visuomotor sequence learning task. Learning occurred incidentally as it was evidenced by faster responses to high-probability than to low-probability targets. To uncover the neurophysiology of the learning process, we conducted both univariate analyses and multivariate pattern analyses (MVPAs) on the temporally decomposed EEG signal. Univariate analyses showed that sequence learning modulated the amplitudes of the motor code of the decomposed signal but not in the perceptual and perceptual-motor signals. However, MVPA revealed that all 3 codes of the decomposed EEG contribute to the neurophysiological representation of the learnt probabilities. Source localization revealed the involvement of a wider network of frontal and parietal activations that were distinctive across coding levels. These findings suggest that perceptual and motor coding both contribute to the learning of sequential regularities rather than to a neither-nor distinction. Moreover, modality-specific encoding worked in concert with modality-independent representations, which suggests that probabilistic sequence learning is nonunitary and encompasses a set of encoding principles.


Assuntos
Aprendizagem , Aprendizagem/fisiologia , Probabilidade
4.
PLoS One ; 15(12): e0243541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301471

RESUMO

The characteristics of acquiring new sequence information under dual-task situations have been extensively studied. A concurrent task has often been found to affect performance. In real life, however, we mostly perform a secondary task when the primary task is already well acquired. The effect of a secondary task on the ability to retrieve well-established sequence representations remains elusive. The present study investigates whether accessing well-acquired probabilistic sequence knowledge is affected by a concurrent task. Participants acquired non-adjacent regularities in an implicit probabilistic sequence learning task. After a 24-hour offline period, participants were tested on the same probabilistic sequence learning task under dual-task or single-task conditions. Here, we show that although the secondary task significantly prolonged the overall reaction times in the primary (sequence learning) task, access to the previously learned probabilistic representations remained intact. Our results highlight the importance of studying the dual-task effect not only in the learning phase but also during memory access to reveal the robustness of the acquired skill.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Aprendizagem Seriada/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA