Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(1)2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38254972

RESUMO

Dwarfing and the selection of optimal plant types constitute the primary focus of sorghum breeding. However, the lack of clarity regarding the gene types associated with plant height genes Dw1-Dw4 in the primary breeding materials has led to increased plant heights in improved offspring of the same plant height type, resulting in unsatisfactory morphological traits. This study aimed to elucidate the gene types related to plant height in breeding materials, validate the regulatory mechanisms, and establish a material improvement system. The goal was to achieve molecular-marker-assisted dwarf breeding through the detection of plant height genes and the test cross verification of main Chinese sorghum materials. Using 38 main male sterile lines and 57 main restorer lines of grain sorghum as materials, three plant height genes were detected and classified. Ninety-five F1 generation hybrids of these materials, along with typical materials, were measured at the wax maturity stage. Test cross results demonstrated that the variation in dw1-dw3 genes in the breeding materials significantly influenced the plant height of hybrid offspring. The main male sterile lines in Chinese sorghum predominantly exhibited the "three-dwarf" type of Kafir and its improved lines, characterized by the genotype (Dw1-Dw2-dw3-dw4). On the other hand, restorer lines mainly showcased the improved "two-dwarf" (Dw1-Dw2-dw3-dw4) genotype of the Kaoliang/Caudatum subspecies, along with the "three-dwarf" type of some Kafir and its improved lines. The test materials predominantly contained dw3 genes, with relatively fewer dw1 genes in the restorer lines. The primary restorer materials lacked the dw2 gene, and dw2 significantly influenced plant type. The increased plant height in improved offspring of the same plant height type material was attributed to differences in gene types. Therefore, the enhancement of plant height in breeding materials should prioritize the use of different methods in conjunction with Dw1 and Dw2 classification.


Assuntos
Infertilidade , Sorghum , Sorghum/genética , Melhoramento Vegetal , Genótipo , China , Fenótipo , Grão Comestível
2.
Genes (Basel) ; 14(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37372395

RESUMO

Sorghum with longer mesocotyls is beneficialfor improving its deep tolerance, which is important for the seedling rates. Here, we perform transcriptome analysis between four different sorghum lines, with the aim of identifying the key genes regulating sorghum mesocotyl elongation. According to the mesocotyl length (ML) data, we constructed four comparison groups for the transcriptome analysis and detected 2705 common DEGs. GO and KEGG enrichment analysis showed that the most common category of DEGs were involved in cell wall, microtubule, cell cycle, phytohormone, and energy metabolism-related pathways. In the cell wall biological processes, the expression of SbEXPA9-1, SbEXPA9-2, SbXTH25, SbXTH8-1, and SbXTH27 are increased in the sorghum lines with long ML. In the plant hormone signaling pathway, five auxin-responsive genes and eight cytokinin/zeatin/abscisic acid/salicylic acid-related genes showed a higher expression level in the long ML sorghum lines. In addition, five ERF genes showed a higher expression level in the sorghum lines with long ML, whereas two ERF genes showed a lower expression level in these lines. Furthermore, the expression levels of these genes were further analyzed using real-time PCR (RT-qPCR), which showed similar results. This work identified the candidate gene regulating ML, which may provide additional evidence to understand the regulatory molecular mechanisms of sorghum mesocotyl elongation.


Assuntos
Sorghum , Sorghum/metabolismo , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Citocininas , Ácido Abscísico , Grão Comestível/genética
3.
Front Plant Sci ; 14: 1068949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794216

RESUMO

CONSTANS (CO) is a central regulator of floral initiation in response to photoperiod. In this study, we show that the GSK3 kinase BIN2 physically interacts with CO and the gain-of-function mutant bin2-1 displays late flowering phenotype through down-regulation of FT transcription. Genetic analyses show that BIN2 genetically acts upstream of CO in regulating flowering time. Further, we illustrate that BIN2 phosphorylates the Thr280 residue of CO. Importantly, the BIN2 phosphorylation of Thr280 residue restricts the function of CO in promoting flowering through affecting its DNA-binding activity. Moreover, we reveal that the N-terminal part of CO harboring the B-Box domain mediates the interaction of both CO-CO and BIN2-CO. We find that BIN2 inhibits the formation of CO dimer/oligomer. Taken together, this study reveals that BIN2 regulates flowering time through phosphorylating the Thr280 of CO and inhibiting the CO-CO interaction in Arabidopsis.

4.
New Phytol ; 233(6): 2488-2502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015902

RESUMO

Pteris vittata is an arsenic (As) hyperaccumulator that can accumulate several thousand mg As kg-1 DW in aboveground biomass. A key factor for its hyperaccumulation ability is its highly efficient As long-distance translocation system. However, the underlying molecular mechanisms remain unknown. We isolated PvAsE1 through the full-length cDNA over-expression library of P. vittata and characterized it through a yeast system, RNAi gametophytes and sporophytes, subcellular-location and in situ hybridization. Phylogenomic analysis was conducted to estimate the appearance time of PvAsE1. PvAsE1 was a plasma membrane-oriented arsenite (AsIII) effluxer. The silencing of PvAsE1 reduced AsIII long-distance translocation in P. vittata sporophytes. PvAsE1 was structurally similar to solute carrier (SLC)13 proteins. Its transcripts could be observed in parenchyma cells surrounding the xylem of roots. The appearance time was estimated at c. 52.7 Ma. PvAsE1 was a previously uncharacterized SLC13-like AsIII effluxer, which may contribute to AsIII long-distance translocation via xylem loading. PvAsE1 appeared late in fern evolution and might be an adaptive subject to the selection pressure at the Cretaceaou-Paleogene boundary. The identification of PvAsE1 provides clues for revealing the special As hyperaccumulation characteristics of P. vittata.


Assuntos
Arsênio , Arsenitos , Gleiquênias , Pteris , Poluentes do Solo , Arsênio/metabolismo , Arsenitos/metabolismo , Biodegradação Ambiental , Gleiquênias/metabolismo , Raízes de Plantas/metabolismo , Pteris/genética , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
5.
J Texture Stud ; 48(5): 386-391, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28967217

RESUMO

The changes in sorghum [Sorghum bicolor (L.) Moench] proteins during germination and the resultant effects on the physicochemical properties of sorghum flour were studied using non-germinated grains as a control. Results showed that flour obtained from germinated sorghum grains had lower protein levels, higher protease levels, and higher free amino nitrogen content compared with the control. There was an increase in the albumin and globulin protein fractions and a decrease in kafirin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that this decrease was the result of a decrease in γ-kafirins, while microscopy found that a continuous protein network was formed. Following the germination-associated protein changes, the viscosities of sorghum paste decreased with germination from a peak viscosity value of 1,324 rapid visco units (RVU) down to 727 RVU in white sorghum (WS), and from 1,549 RVU to 1,295 RVU in red sorghum (RS). The hardness of the sorghum gels was significantly enhanced after germination, with WS increasing from 1,640 g to 5,374 g and RS from 970 g to 5,529 g. Thus, the study revealed that germination decreased the viscosity of sorghum paste and increased the strength of sorghum gel by changing the content and structure of sorghum protein, making it possible to design new foods that require thickening and gelling using germinated sorghum. PRACTICAL APPLICATIONS: Germination triggers the protease system of sprouting seeds, leading to the breakdown of proteins into simpler forms that decrease the viscosity of sorghum paste and improve the strength of sorghum gel, allowing the use of germinated sorghum to design new foods that require thickening and gelling.


Assuntos
Grão Comestível/química , Germinação , Proteínas de Plantas/química , Sorghum/química , Viscosidade , Fenômenos Químicos , Manipulação de Alimentos , Solubilidade , Sorghum/crescimento & desenvolvimento , Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA