Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(18): 3906-3910, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38683227

RESUMO

Sulfilimines are valuable compounds in both organic synthesis and pharmaceuticals. In this study, we present a copper-catalyzed sulfur alkylation of sulfenamides with N-sulfonylhydrazones. In contrast to prior findings, hydrazones derived from aldehydes act as donor-type carbene precursors, effectively engaging in coupling with sulfenamides via a copper catalyst, demonstrating exclusive S selectivity. The utility of the protocol was highlighted in the rapid access to a wide range of sulfoximine derivatives.

2.
Nat Commun ; 14(1): 6952, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907462

RESUMO

O-GlcNAcylation is a conserved post-translational modification that attaches N-acetyl glucosamine (GlcNAc) to myriad cellular proteins. In response to nutritional and hormonal signals, O-GlcNAcylation regulates diverse cellular processes by modulating the stability, structure, and function of target proteins. Dysregulation of O-GlcNAcylation has been implicated in the pathogenesis of cancer, diabetes, and neurodegeneration. A single pair of enzymes, the O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), catalyzes the addition and removal of O-GlcNAc on over 3,000 proteins in the human proteome. However, how OGT selects its native substrates and maintains the homeostatic control of O-GlcNAcylation of so many substrates against OGA is not fully understood. Here, we present the cryo-electron microscopy (cryo-EM) structures of human OGT and the OGT-OGA complex. Our studies reveal that OGT forms a functionally important scissor-shaped dimer. Within the OGT-OGA complex structure, a long flexible OGA segment occupies the extended substrate-binding groove of OGT and positions a serine for O-GlcNAcylation, thus preventing OGT from modifying other substrates. Conversely, OGT disrupts the functional dimerization of OGA and occludes its active site, resulting in the blocking of access by other substrates. This mutual inhibition between OGT and OGA may limit the futile O-GlcNAcylation cycles and help to maintain O-GlcNAc homeostasis.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Humanos , Acetilglucosamina/metabolismo , Acetilglucosaminidase/metabolismo , Microscopia Crioeletrônica , N-Acetilglucosaminiltransferases/metabolismo , Proteínas/metabolismo
3.
STAR Protoc ; 3(4): 101682, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36115024

RESUMO

Human embryonic stem cells (hESCs) continuously self-renew in culture and can be induced to differentiate into multiple cell types, including neural progenitor cells (NPCs). Here, we present a protocol to perform a CRISPR-Cas9 screen in hESCs to identify regulators that promote SOX1 expression during NPC formation. This screening protocol can be adapted with other endpoint reporters for the identification of genes involved in the commitment of hESCs to other cell lineages. For complete details on the use and execution of this protocol, please refer to Sivakumar et al. (2022).


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Humanos , Sistemas CRISPR-Cas , Diferenciação Celular
4.
Cell Rep ; 38(7): 110395, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172133

RESUMO

Aneuploidy, defective differentiation, and inactivation of the tumor suppressor TP53 all occur frequently during tumorigenesis. Here, we probe the potential links among these cancer traits by inactivating TP53 in human embryonic stem cells (hESCs). TP53-/- hESCs exhibit increased proliferation rates, mitotic errors, and low-grade structural aneuploidy; produce poorly differentiated immature teratomas in mice; and fail to differentiate into neural progenitor cells (NPCs) in vitro. Genome-wide CRISPR screen reveals requirements of ciliogenesis and sonic hedgehog (Shh) pathways for hESC differentiation into NPCs. TP53 deletion causes abnormal ciliogenesis in neural rosettes. In addition to restraining cell proliferation through CDKN1A, TP53 activates the transcription of BBS9, which encodes a ciliogenesis regulator required for proper Shh signaling and NPC formation. This developmentally regulated transcriptional program of TP53 promotes ciliogenesis, restrains Shh signaling, and commits hESCs to neural lineages.


Assuntos
Linhagem da Célula , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Organogênese , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Motivos de Aminoácidos , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Genoma Humano , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Teratoma/patologia , Proteína Supressora de Tumor p53/química
5.
Org Lett ; 22(13): 5229-5234, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32558574

RESUMO

Various new transformations of gem-difluoroalkenes leading to trifluoromethyl substituted compounds have been well established in the past years. However, the development of new transformations of gem-difluoroenynes lags much behind. Herein is reported the fluoroarylation of 1,1-difluoro-1,3-enynes with aryl halides in the presence of silver fluoride affording trisubstituted trifluoromethyl allenes under the catalysis of palladium. The reaction features mild conditions, high functional-group tolerance, and high regioselectivity.

6.
Nat Struct Mol Biol ; 26(7): 583-591, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235910

RESUMO

Microtubules are regulated by post-translational modifications of tubulin. The ligation and cleavage of the carboxy-terminal tyrosine of α-tubulin impact microtubule functions during mitosis, cardiomyocyte contraction and neuronal processes. Tubulin tyrosination and detyrosination are mediated by tubulin tyrosine ligase and the recently discovered tubulin detyrosinases, vasohibin 1 and 2 (VASH1 and VASH2) bound to the small vasohibin-binding protein (SVBP). Here, we report the crystal structures of human VASH1-SVBP alone, in complex with a tyrosine-derived covalent inhibitor and bound to the natural product parthenolide. The structures and subsequent mutagenesis analyses explain the requirement for SVBP during tubulin detyrosination, and reveal the basis for the recognition of the C-terminal tyrosine and the acidic α-tubulin tail by VASH1. The VASH1-SVBP-parthenolide structure provides a framework for designing more effective chemical inhibitors of vasohibins, which can be valuable for dissecting their biological functions and may have therapeutic potential.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Tubulina (Proteína)/química
7.
Cell Death Differ ; 26(5): 969-980, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30154445

RESUMO

Zygotic chromatin undergoes extensive reprogramming immediately after fertilization. It is generally accepted that maternal factors control this process. However, little is known about the underlying mechanisms. Here we report that maternal RAD9A, a key protein in DNA damage response pathway, is involved in post-zygotic embryo development, via a mouse model with conditional depletion of Rad9a alleles in oocytes of primordial follicles. Post-zygotic losses originate from delayed zygotic chromatin decondensation after depletion of maternal RAD9A. Pronucleus formation and DNA replication of most mutant zygotes are therefore deferred, which subsequently trigger the G2/M checkpoint and arrest development of most mutant zygotes. Delayed zygotic chromatin decondensation could also lead to increased reabsorption of post-implantation mutant embryos. In addition, our data indicate that delayed zygotic chromatin decondensation may be attributed to deferred epigenetic modification of histone in paternal chromatin after fertilization, as fertilization and resumption of secondary meiosis in mutant oocytes were both normal. More interestingly, most mutant oocytes could not support development beyond one-cell stage after parthenogenetic activation. Therefore, RAD9A may also play an important role in maternal chromatin reprogramming. In summary, our data reveal an important role of RAD9A in zygotic chromatin reprogramming and female fertility.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/genética , Desenvolvimento Embrionário/genética , Epigênese Genética , Animais , Núcleo Celular/genética , Replicação do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/genética , Masculino , Meiose/genética , Camundongos , Oócitos/crescimento & desenvolvimento , Espermatozoides/crescimento & desenvolvimento , Zigoto/crescimento & desenvolvimento
8.
Mol Med Rep ; 18(2): 1981-1986, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29901147

RESUMO

The aim of the present study was to verify the effects of heavy metal coupling agents (sodium citrate and EDTA) and antioxidants (acetyl carnitine and lipoic acid) on the number of oocytes, as well as the ageing of mitochondria, chromosomes and spindles in mice. C57BL/6 female mice were randomly classified into four groups (n=12 per group): i) Heavy metal coupling agent; ii) antioxidant; iii) mixed group; and iv) the normal control group. For the treatments, heavy metal coupling agents and antioxidants were added to the drinking water provided to the mice. Following 3, 6, 9 and 12 months of treatment, the number of oocytes and mitochondrial membrane potential were determined, and chromosome and spindle structures were observed. With increasing age, the experimental mice in the four groups showed significantly decreased numbers of oocytes, reduced mitochondrial activity, and increased rates of spindle and chromosome abnormalities, which indicated age­induced ageing of mouse oocytes; thus, a mouse ageing oocyte model had been successfully established. For mice of the same age, more oocytes, higher mitochondrial activity, and lower spindle and chromosome malformation rates were detected in the antioxidant and mixed groups when compared with the normal control groups. Furthermore, no significant difference in the number of oocytes, mitochondrial activity or chromosome malformation rates was observed between the heavy metal coupling agent group and normal control group, which was possibly due to less metal being absorbed during the breeding process. Therefore, the results demonstrated that the antioxidants acetyl carnitine and lipoic acid may serve a role in delaying oocyte ageing.


Assuntos
Antioxidantes/metabolismo , Senescência Celular , Aberrações Cromossômicas , Cromossomos de Mamíferos/metabolismo , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Oócitos/metabolismo , Animais , Feminino , Camundongos , Membranas Mitocondriais/patologia
9.
J Huazhong Univ Sci Technolog Med Sci ; 37(3): 313-318, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28585134

RESUMO

Proper chromosome separation in both mitosis and meiosis depends on the correct connection between kinetochores of chromosomes and spindle microtubules. Kinetochore dysfunction can lead to unequal distribution of chromosomes during cell division and result in aneuploidy, thus kinetochores are critical for faithful segregation of chromosomes. Centromere protein A (CENP-A) is an important component of the inner kinetochore plate. Multiple studies in mitosis have found that deficiencies in CENP-A could result in structural and functional changes of kinetochores, leading to abnormal chromosome segregation, aneuploidy and apoptosis in cells. Here we report the expression and function of CENP-A during mouse oocyte meiosis. Our study found that microinjection of CENP-A blocking antibody resulted in errors of homologous chromosome segregation and caused aneuploidy in eggs. Thus, our findings provide evidence that CENP-A is critical for the faithful chromosome segregation during mammalian oocyte meiosis.


Assuntos
Proteína Centromérica A/genética , Segregação de Cromossomos , Cromossomos de Mamíferos/metabolismo , Cinetocoros/metabolismo , Meiose , Fuso Acromático/metabolismo , Aneuploidia , Animais , Anticorpos Neutralizantes/farmacologia , Apoptose , Proteína Centromérica A/antagonistas & inibidores , Proteína Centromérica A/metabolismo , Cromossomos de Mamíferos/ultraestrutura , Feminino , Regulação da Expressão Gênica , Cariotipagem , Cinetocoros/ultraestrutura , Camundongos , Camundongos Endogâmicos ICR , Microinjeções , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Oócitos/metabolismo , Oócitos/ultraestrutura , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fuso Acromático/ultraestrutura
10.
Sci Rep ; 7(1): 1434, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469172

RESUMO

Pre-maturation aging of immature oocytes may adversely affect the fate of an oocyte. Oxidative stress is one of the most detrimental factors affecting oocyte developmental competence and maturation during aging. In this study, experiments were designed to examine whether supplementation of antioxidants in a culture medium could protect immature mouse oocytes from damages caused by oxidative stress. Mouse oocytes at germinal vesicle stage were prevented from meiosis resumption and cultured in a medium with or without antioxidants for 12-36 h to allow oocytes to undergo aging. After aging, oocytes were cultured for maturation. Nuclear maturation, mitochondria activity, spindle morphology and DNA integrity were examined after maturation. It was found that antioxidants had protective effects on the oocytes in terms of nuclear maturation, functional mitochondria, spindle morphology and DNA integrity. As aging time was prolonged from 12 to 36 h, the protective effect of antioxidants became more obvious. However, as compared with oocytes without aging, it was found that aging significantly inhibited nuclear maturation, impaired mitochondria function, and damaged the spindle and DNA. These results indicate that pre-maturation aging is detrimental to oocytes' competence to undergo maturation and other cellular activities, and antioxidants can protect oocytes from damages caused by aging.


Assuntos
Acetilcarnitina/farmacologia , Antioxidantes/farmacologia , Senescência Celular/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Citrato de Sódio/farmacologia , Ácido Tióctico/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Feminino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Oócitos/citologia , Oócitos/metabolismo , Estresse Oxidativo , Cultura Primária de Células , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
11.
Org Lett ; 19(8): 2146-2149, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28402652

RESUMO

A regio- and diastereoselective cross-dehydrogenative coupling of N-carbamoyl tetrahydropyridines with a variety of 1,3-dicarbonyl compounds is described. The method exhibits good functional group tolerance, diastereoselectively generating cis-2,6- or cis-2,4-substituted tetrahydropyridines by using different types of 1,3-dicarbonyls. Moreover, a two-step sequence involving diastereoselective cross-dehydrogenative coupling followed by epimerization was also developed, allowing facile access to trans-2,6-substituted tetrahydropyridines as single isomers. Applications in natural product synthesis and divergent analogue preparation were further demonstrated.

12.
Oncotarget ; 7(52): 86350-86358, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27861152

RESUMO

Spermatogenesis in testes requires precise spermatogonia differentiation. Spermatocytes lacking the Rad9a gene are arrested in pachytene prophase, implying a possible role for RAD9A in spermatogonia differentiation. However, numerous RAD9A-positive pachytene spermatocytes are still observed in mouse testes following Rad9a excision using the Stra8-Cre system, and it is unclear whether Rad9a deletion in spermatogonia interrupts differentiation. Here, we generated a mouse model in which Rad9a was specifically deleted in spermatogonial stem cells (SSCs) using Cre recombinase expression driven by the germ cell-specific Vasa promoter. Adult Rad9a-null male mice were infertile as a result of completely blocked spermatogonia differentiation. No early spermatocytes were detected in mutant testicular cords of 9-day-old mice. Mutant spermatogonia were prone to apoptosis, although proliferation rates were unaffected. Rad9a deletion also resulted in malformation of seminiferous tubules, in which cells assembled irregularly into clusters, and malformation led to testicular cord disruption. Our findings suggest that Rad9a is indispensable for spermatogonia differentiation and testicular development in mice.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Espermatogônias/citologia , Animais , Apoptose , Diferenciação Celular , RNA Helicases DEAD-box/análise , Proteínas de Ligação a DNA/análise , Infertilidade Masculina/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fatores de Transcrição/análise
13.
J Biol Chem ; 291(44): 23020-23026, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27613873

RESUMO

During the oogenesis of Xenopus laevis, oocytes accumulate maternal materials for early embryo development. As the transcription activity of the oocyte is silenced at the fully grown stage and the global genome is reactivated only by the mid-blastula embryo stage, the translation of maternal mRNAs accumulated during oocyte growth should be accurately regulated. Previous evidence has illustrated that the poly(A) tail length and RNA binding elements mediate RNA translation regulation in the oocyte. Recently, RNA methylation has been found to exist in various systems. In this study, we sequenced the N6-methyladenosine (m6A) modified mRNAs in fully grown germinal vesicle-stage and metaphase II-stage oocytes. As a result, we identified 4207 mRNAs with m6A peaks in germinal vesicle-stage or metaphase II-stage oocytes. When we integrated the mRNA methylation data with transcriptome and proteome data, we found that the highly methylated mRNAs showed significantly lower protein levels than those of the hypomethylated mRNAs, although the RNA levels showed no significant difference. We also found that the hypomethylated mRNAs were mainly enriched in the cell cycle and translation pathways, whereas the highly methylated mRNAs were mainly associated with protein phosphorylation. Our results suggest that oocyte mRNA methylation can regulate cellular translation and cell division during oocyte meiotic maturation and early embryo development.


Assuntos
Adenosina/análogos & derivados , Meiose , Oócitos/crescimento & desenvolvimento , Biossíntese de Proteínas , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Adenosina/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
14.
Biochem Biophys Res Commun ; 474(4): 667-672, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27150633

RESUMO

Nek11, a member of the never in mitosis gene A (NIMA) family, is activated in somatic cells associated with G1/S or G2/M arrest. However, its function in meiosis is unknown. In this research, the expression, localization and functions of NEK11 in the mouse oocyte meiotic maturation were examined. Western blotting indicated that NEK11S was the major NEK11 protein in mouse oocyte. MYC-tagged Nek11 mRNA microinjection and immunofluorescent staining showed that NEK11 was localized to the meiotic spindles at MI and MII stage. Knockdown of Nek11 by microinjection of siRNA did not affect germinal vesicle breakdown (GVBD) and the first polar body extrusion, but caused formation of 2-cell-like eggs. These results demonstrate that Nek11 regulates asymmetric cell division during oocyte meiotic maturation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Metáfase/fisiologia , Fusos Musculares/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Animais , Células Cultivadas , Feminino , Camundongos
15.
Sci Rep ; 5: 16978, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582107

RESUMO

Cep55 is a relatively novel member of the centrosomal protein family. Here, we show that Cep55 is expressed in mouse oocytes from the germinal vesicle (GV) to metaphase II (MII) stages. Immuostaining and confocal microscopy as well as time lapse live imaging after injection of mRNA encoding fusion protein of Cep55 and GFP identified that Cep55 was localized to the meiotic spindle, especially to the spindle poles at metaphase, while it was concentrated at the midbody in telophase in meiotic oocytes. Knockdown of Cep55 by specific siRNA injection caused the dissociation of γ-tubulin from the spindle poles, resulting in severely defective spindles and misaligned chromosomes, leading to metaphase I arrest and failure of first polar body (PB1) extrusion. Correspondingly, cyclin B accumulation and spindle assembly checkpoint (SAC) activation were observed in Cep55 knockdown oocytes. Our results suggest that Cep55 may act as an MTOC-associated protein regulating spindle organization, and thus cell cycle progression during mouse oocyte meiotic maturation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Oócitos/citologia , Oócitos/metabolismo , Fuso Acromático/metabolismo , Anáfase , Animais , Cromossomos de Mamíferos/metabolismo , Ciclina B1/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Corpos Polares/metabolismo , Transporte Proteico , Frações Subcelulares/metabolismo , Tubulina (Proteína)/metabolismo
16.
Cell Cycle ; 14(16): 2648-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26125114

RESUMO

Cyclin B3 is a relatively new member of the cyclin family whose functions are little known. We found that depletion of cyclin B3 inhibited metaphase-anaphase transition as indicated by a well-sustained MI spindle and cyclin B1 expression in meiotic oocytes after extended culture. This effect was independent of spindle assembly checkpoint activity, since both Bub3 and BubR1 signals were not observed at kinetochores in MI-arrested cells. The metaphase I arrest was not rescued by either Mad2 knockdown or cdc20 overexpression, but it was rescued by securin RNAi. We conclude that cyclin B3 controls the metaphase-anaphase transition by activating APC/C(cdc20) in meiotic oocytes, a process that does not rely on SAC activity.


Assuntos
Anáfase , Ciclina B/fisiologia , Oócitos/fisiologia , Animais , Células Cultivadas , Feminino , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Camundongos Endogâmicos ICR
17.
Cell Cycle ; 14(16): 2701-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26054848

RESUMO

Nuf2 plays an important role in kinetochore-microtubule attachment and thus is involved in regulation of the spindle assembly checkpoint in mitosis. In this study, we examined the localization and function of Nuf2 during mouse oocyte meiotic maturation. Myc6-Nuf2 mRNA injection and immunofluorescent staining showed that Nuf2 localized to kinetochores from germinal vesicle breakdown to metaphase I stages, while it disappeared from the kinetochores at the anaphase I stage, but relocated to kinetochores at the MII stage. Overexpression of Nuf2 caused defective spindles, misaligned chromosomes, and activated spindle assembly checkpoint, and thus inhibited chromosome segregation and metaphase-anaphase transition in oocyte meiosis. Conversely, precocious polar body extrusion was observed in the presence of misaligned chromosomes and abnormal spindle formation in Nuf2 knock-down oocytes, causing aneuploidy. Our data suggest that Nuf2 is a critical regulator of meiotic cell cycle progression in mammalian oocytes.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Segregação de Cromossomos , Meiose , Oócitos/fisiologia , Aneuploidia , Animais , Células Cultivadas , Cromátides/fisiologia , Expressão Gênica , Camundongos , Camundongos Endogâmicos ICR , Corpos Polares/fisiologia , Transporte Proteico
18.
Cell Cycle ; 14(11): 1675-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25927854

RESUMO

CK1 (casein kinase 1) is a family of serine/threonine protein kinase that is ubiquitously expressed in eukaryotic organism. CK1 members are involved in the regulation of many cellular processes. Particularly, CK1 was reported to phosphorylate Rec8 subunits of cohesin complex and regulate chromosome segregation in meiosis in budding yeast and fission yeast. (1-3) Here we investigated the expression, subcellular localization and potential functions of CK1α, CK1δ and CK1ε during mouse oocyte meiotic maturation. We found that CK1α, CK1δ and CK1ε all concentrated at the spindle poles and co-localized with γ-tubulin in oocytes at both metaphase I (MI) and metaphase II (MII) stages. However, depletion of CK1 by RNAi or overexpression of wild type or kinase-dead CK1 showed no effects on either spindle organization or chromosome segregation during oocyte meiotic maturation. Thus, CK1 is not the kinase that phosphorylates Rec8 cohesin in mammalian oocytes, and CK1 may not be essential for spindle organization and meiotic progression although they localize at spindle poles.


Assuntos
Caseína Quinase I/metabolismo , Regulação da Expressão Gênica/fisiologia , Meiose/fisiologia , Oócitos/fisiologia , Polos do Fuso/metabolismo , Animais , Western Blotting , Caseína Quinase I/genética , Proteínas de Ciclo Celular , Técnicas de Silenciamento de Genes , Camundongos , Microscopia Confocal , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/metabolismo
19.
Biol Reprod ; 92(4): 97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25761595

RESUMO

The mammalian oocyte undergoes two rounds of asymmetric cell divisions during meiotic maturation and fertilization. Acentric spindle positioning and cortical polarity are two major factors involved in asymmetric cell division, both of which are thought to depend on the dynamic interaction between myosin II and actin filaments. Myosin light chain kinase (MLCK), encoded by the Mylk1 gene, could directly phosphorylate and activate myosin II. To determine whether MLCK was required for oocyte asymmetric division, we specifically disrupted the Mylk1 gene in oocytes by Cre-loxP conditional knockout system. We found that Mylk1 mutant female mice showed severe subfertility. Unexpectedly, contrary to previously reported in vitro findings, our data showed that oocyte meiotic maturation including spindle organization, polarity establishment, homologous chromosomes separation, and polar body extrusion were not affected in Mylk1(fl/fl);GCre(+) females. Follicular development, ovulation, and early embryonic development up to compact morula occurred normally in Mylk1(fl/fl);GCre(+) females, but deletion of MLCK caused delayed morula-to-blastocyst transition. More than a third of embryos were at morula stage at 3.5 Days Postcoitum in vivo. The delayed embryos could develop further to early blastocyst stage in vitro on Day 4 when most control embryos reached expanded blastocysts. Our findings provide evidence that MLCK is linked to timely blastocyst formation, though it is dispensable for oocyte meiotic maturation.


Assuntos
Blastocisto/fisiologia , Fertilidade/genética , Mórula/fisiologia , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/fisiologia , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Animais , Cromossomos de Mamíferos/genética , Feminino , Fertilidade/fisiologia , Fertilização/genética , Deleção de Genes , Infertilidade/genética , Infertilidade/fisiopatologia , Meiose/genética , Camundongos , Camundongos Endogâmicos C57BL , Corpos Polares/fisiologia , Gravidez , Fuso Acromático/genética , Fuso Acromático/fisiologia
20.
Biol Reprod ; 91(1): 19, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24899574

RESUMO

Ppp2r1a encodes the scaffold subunit Aalpha of protein phosphatase 2A (PP2A), which is an important and ubiquitously expressed serine threonine phosphatase family and plays a critical role in many fundamental cellular processes. To identify the physiological role of PP2A in female germ cell meiosis, we selectively disrupted Ppp2r1a expression in oocytes by using the Cre-Loxp conditional knockout system. Here we report for the first time that oocyte-specific deletion of Ppp2r1a led to severe female subfertility without affecting follicle survival, growth, and ovulation. PP2A-Aalpha was essential for regulating oocyte meiotic maturation because depletion of PP2A-Aalpha facilitated germinal vesicle breakdown, causing elongation of the MII spindle and precocious separation of sister chromatids. The resulting eggs had high risk of aneuploidy, though they could be fertilized, leading to defective embryonic development and thus subfertility. Our findings provide strong evidence that PP2A-Aalpha within the oocyte plays an indispensable role in oocyte meiotic maturation, though it is dispensable for folliculogenesis in the mouse ovary.


Assuntos
Fertilidade/fisiologia , Meiose/fisiologia , Oócitos/metabolismo , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Animais , Feminino , Camundongos , Camundongos Knockout , Oogênese/fisiologia , Ovulação/genética , Ovulação/metabolismo , Proteína Fosfatase 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA