Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Neuron ; 111(23): 3706-3709, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37794591

RESUMO

Early-life environments have an immense influence on long-term health outcomes. We have started to elucidate the mechanisms underlying this association but have made little progress in reducing the disease burden of environmentally mediated neurological and psychiatric illness. Here, we highlight barriers to innovation and how they may be overcome.


Assuntos
Transtornos Mentais , Humanos , Criança , Encéfalo
2.
Mol Psychiatry ; 28(6): 2549-2562, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37198262

RESUMO

Environmental toxicant exposure, including air pollution, is increasing worldwide. However, toxicant exposures are not equitably distributed. Rather, low-income and minority communities bear the greatest burden, along with higher levels of psychosocial stress. Both air pollution and maternal stress during pregnancy have been linked to neurodevelopmental disorders such as autism, but biological mechanisms and targets for therapeutic intervention remain poorly understood. We demonstrate that combined prenatal exposure to air pollution (diesel exhaust particles, DEP) and maternal stress (MS) in mice induces social behavior deficits only in male offspring, in line with the male bias in autism. These behavioral deficits are accompanied by changes in microglial morphology and gene expression as well as decreased dopamine receptor expression and dopaminergic fiber input in the nucleus accumbens (NAc). Importantly, the gut-brain axis has been implicated in ASD, and both microglia and the dopamine system are sensitive to the composition of the gut microbiome. In line with this, we find that the composition of the gut microbiome and the structure of the intestinal epithelium are significantly shifted in DEP/MS-exposed males. Excitingly, both the DEP/MS-induced social deficits and microglial alterations in males are prevented by shifting the gut microbiome at birth via a cross-fostering procedure. However, while social deficits in DEP/MS males can be reversed by chemogenetic activation of dopamine neurons in the ventral tegmental area, modulation of the gut microbiome does not impact dopamine endpoints. These findings demonstrate male-specific changes in the gut-brain axis following DEP/MS and suggest that the gut microbiome is an important modulator of both social behavior and microglia.


Assuntos
Dopamina , Microglia , Gravidez , Feminino , Camundongos , Masculino , Animais , Microglia/metabolismo , Dopamina/metabolismo , Comportamento Social , Emissões de Veículos , Neurônios Dopaminérgicos
3.
Nat Neurosci ; 26(5): 737-750, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095396

RESUMO

Pathological hallmarks of Alzheimer's disease (AD) precede clinical symptoms by years, indicating a period of cognitive resilience before the onset of dementia. Here, we report that activation of cyclic GMP-AMP synthase (cGAS) diminishes cognitive resilience by decreasing the neuronal transcriptional network of myocyte enhancer factor 2c (MEF2C) through type I interferon (IFN-I) signaling. Pathogenic tau activates cGAS and IFN-I responses in microglia, in part mediated by cytosolic leakage of mitochondrial DNA. Genetic ablation of Cgas in mice with tauopathy diminished the microglial IFN-I response, preserved synapse integrity and plasticity and protected against cognitive impairment without affecting the pathogenic tau load. cGAS ablation increased, while activation of IFN-I decreased, the neuronal MEF2C expression network linked to cognitive resilience in AD. Pharmacological inhibition of cGAS in mice with tauopathy enhanced the neuronal MEF2C transcriptional network and restored synaptic integrity, plasticity and memory, supporting the therapeutic potential of targeting the cGAS-IFN-MEF2C axis to improve resilience against AD-related pathological insults.


Assuntos
Microglia , Nucleotidiltransferases , Proteínas tau , Animais , Camundongos , Cognição , Imunidade Inata , Interferons , Fatores de Transcrição MEF2/genética , Microglia/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(16): e2217864120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043533

RESUMO

Aberrant activity of cyclin-dependent kinase (Cdk5) has been implicated in various neurodegenerative diseases. This deleterious effect is mediated by pathological cleavage of the Cdk5 activator p35 into the truncated product p25, leading to prolonged Cdk5 activation and altered substrate specificity. Elevated p25 levels have been reported in humans and rodents with neurodegeneration, and the benefit of genetically blocking p25 production has been demonstrated previously in rodent and human neurodegenerative models. Here, we report a 12-amino-acid-long peptide fragment derived from Cdk5 (Cdk5i) that is considerably smaller than existing peptide inhibitors of Cdk5 (P5 and CIP) but shows high binding affinity toward the Cdk5/p25 complex, disrupts the interaction of Cdk5 with p25, and lowers Cdk5/p25 kinase activity. When tagged with a fluorophore (FITC) and the cell-penetrating transactivator of transcription (TAT) sequence, the Cdk5i-FT peptide exhibits cell- and brain-penetrant properties and confers protection against neurodegenerative phenotypes associated with Cdk5 hyperactivity in cell and mouse models of neurodegeneration, highlighting Cdk5i's therapeutic potential.


Assuntos
Quinase 5 Dependente de Ciclina , Peptídeos , Camundongos , Animais , Humanos , Quinase 5 Dependente de Ciclina/metabolismo , Fosforilação , Peptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fenótipo
5.
Neurobiol Sleep Circadian Rhythms ; 14: 100085, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36567958

RESUMO

Sleep is an essential component of development. Developmental sleep disruption (DSD) impacts brain maturation and has been associated with significant consequences on socio-emotional development. In humans, poor sleep during infancy and adolescence affects neurodevelopmental outcomes and may be a risk factor for the development of autism spectrum disorder (ASD) or other neuropsychiatric illness. Given the wide-reaching and enduring consequences of DSD, identifying underlying mechanisms is critical to best inform interventions with translational capacity. In rodents, studies have identified some mechanisms and neural circuits by which DSD causes later social, emotional, sensorimotor, and cognitive changes. However, these studies spanned methodological differences, including different developmental timepoints for both sleep disruption and testing, different DSD paradigms, and even different rodent species. In this scoping review on DSD in rodents, we synthesize these various studies into a cohesive framework to identify common neural mechanisms underlying DSD-induced dysfunction in brain and behavior. Ultimately, this review serves the goal to inform the generation of novel translational interventions for human developmental disorders featuring sleep disruption.

6.
Pediatr Res ; 93(1): 56-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35568732

RESUMO

BACKGROUND: Measurement of neonatal team resuscitation performance is critical to identify opportunities for improvement and to target education. An effective tool to measure team performance during infant resuscitations is lacking. METHODS: We developed an in-hospital infant resuscitation performance tool (Infa-RePT) using the modified Delphi method. We employed a QI framework and targeted interventions, including the use of role responsibility checklists, mock codes, and an educational video. We tracked Infa-RePT scores, mock code team attendance, and confidence surveys. Our specific aim was to improve Infa-RePT score from a baseline of 7.4 to <5 (lower is better) over a 26-month period. RESULTS: Twenty-five elements reached >80% consensus as essential components to include on the Infa-RePT. Independent observation showed 86% concordance on checklist items. Simulation (n = 26) and unit-based code (n = 10) Infa-RePT scores showed significant improvement after project start from 7.4 to 4.2 (p < 0.01) with special cause variation noted on control chart analysis. No significant difference was observed between simulations and in-unit codes. Staff confidence self-reports improved over the study period. CONCLUSIONS: Use of a novel scoring tool can help monitor team progress over time and identify areas for improvement. Focused interventions can improve resuscitation team performance. IMPACT: We developed and used a novel, comprehensive measurement tool for team infant resuscitation performance in both simulation and in-unit settings. Using QI methodology, team performance improved after the enhancement of a mock code simulation program. Review of team performance scores can highlight key areas to target interventions and monitor progress over time.


Assuntos
Competência Clínica , Equipe de Assistência ao Paciente , Humanos , Lactente , Recém-Nascido , Ressuscitação/métodos , Inquéritos e Questionários
7.
Neoreviews ; 23(5): e359-e362, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35490183
8.
Sci Transl Med ; 13(618): eabd7695, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34731014

RESUMO

Recent increases in human longevity have been accompanied by a rise in the incidence of dementia, highlighting the need to preserve cognitive function in an aging population. A small percentage of individuals with pathological hallmarks of neurodegenerative disease are able to maintain normal cognition. Although the molecular mechanisms that govern this neuroprotection remain unknown, individuals that exhibit cognitive resilience (CgR) represent a unique source of therapeutic insight. For both humans and animal models, living in an enriched, cognitively stimulating environment is the most effective known inducer of CgR. To understand potential drivers of this phenomenon, we began by profiling the molecular changes that arise from environmental enrichment in mice, which led to the identification of MEF2 transcription factors (TFs). We next turned to repositories of human clinical and brain transcriptomic data, where we found that the MEF2 transcriptional network was overrepresented among genes that are most predictive of end-stage cognition. Through single-nucleus RNA sequencing of cortical tissue from resilient and nonresilient individuals, we further confirmed up-regulation of MEF2C in resilient individuals to a subpopulation of excitatory neurons. Last, to determine the causal impact of MEF2 on cognition in the context of neurodegeneration, we overexpressed Mef2a/c in the PS19 mouse model of tauopathy and found that this was sufficient to improve cognitive flexibility and reduce hyperexcitability. Overall, our findings reveal a previously unappreciated role for MEF2 TFs in promoting CgR, highlighting their potential as biomarkers or therapeutic targets for neurodegeneration and healthy aging.


Assuntos
Fatores de Transcrição MEF2 , Doenças Neurodegenerativas , Animais , Encéfalo/metabolismo , Cognição/fisiologia , Redes Reguladoras de Genes , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Doenças Neurodegenerativas/genética
9.
J Perinatol ; 41(5): 940-951, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33293665

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, resulting from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused severe and widespread illness in adults, including pregnant women, while rarely infecting neonates. An incomplete understanding of disease pathogenesis and viral spread has resulted in evolving guidelines to reduce transmission from infected mothers to neonates. Fortunately, the risk of neonatal infection via perinatal/postnatal transmission is low when recommended precautions are followed. However, the psychosocial implications of these practices and racial/ethnic disparities highlighted by this pandemic must also be addressed when caring for mothers and their newborns. This review provides a comprehensive overview of neonatal-perinatal perspectives of COVID-19, ranging from the basic science of infection and recommendations for care of pregnant women and neonates to important psychosocial, ethical, and racial/ethnic topics emerging as a result of both the pandemic and the response of the healthcare community to the care of infected individuals.


Assuntos
COVID-19/transmissão , Transmissão Vertical de Doenças Infecciosas/estatística & dados numéricos , Complicações Infecciosas na Gravidez/epidemiologia , Resultado da Gravidez/epidemiologia , SARS-CoV-2/fisiologia , Corticosteroides/uso terapêutico , COVID-19/epidemiologia , Gerenciamento Clínico , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Avaliação de Resultados em Cuidados de Saúde , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , Tratamento Farmacológico da COVID-19
10.
Nat Neurosci ; 23(12): 1606-1617, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020654

RESUMO

The epigenome and three-dimensional (3D) genomic architecture are emerging as key factors in the dynamic regulation of different transcriptional programs required for neuronal functions. In this study, we used an activity-dependent tagging system in mice to determine the epigenetic state, 3D genome architecture and transcriptional landscape of engram cells over the lifespan of memory formation and recall. Our findings reveal that memory encoding leads to an epigenetic priming event, marked by increased accessibility of enhancers without the corresponding transcriptional changes. Memory consolidation subsequently results in spatial reorganization of large chromatin segments and promoter-enhancer interactions. Finally, with reactivation, engram neurons use a subset of de novo long-range interactions, where primed enhancers are brought in contact with their respective promoters to upregulate genes involved in local protein translation in synaptic compartments. Collectively, our work elucidates the comprehensive transcriptional and epigenomic landscape across the lifespan of memory formation and recall in the hippocampal engram ensemble.


Assuntos
Epigenômica , Hipocampo/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Transcriptoma , Animais , Mapeamento Encefálico , Consolidação da Memória/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Regulação para Cima/fisiologia
13.
Angew Chem Int Ed Engl ; 57(1): 348-353, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29067779

RESUMO

The spread of antibiotic resistance is a major challenge for the treatment of Mycobacterium tuberculosis infections. In addition, the efficacy of drugs is often limited by the restricted permeability of the mycomembrane. Frontline antibiotics inhibit mycomembrane biosynthesis, leading to rapid cell death. Inspired by this mechanism, we exploited ß-lactones as putative mycolic acid mimics to block serine hydrolases involved in their biosynthesis. Among a collection of ß-lactones, we found one hit with potent anti-mycobacterial and bactericidal activity. Chemical proteomics using an alkynylated probe identified Pks13 and Ag85 serine hydrolases as major targets. Validation through enzyme assays and customized 13 C metabolite profiling showed that both targets are functionally impaired by the ß-lactone. Co-administration with front-line antibiotics enhanced the potency against M. tuberculosis by more than 100-fold, thus demonstrating the therapeutic potential of targeting mycomembrane biosynthesis serine hydrolases.


Assuntos
Antituberculosos/farmacologia , Lactonas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Ácidos Micólicos/antagonistas & inibidores , Aciltransferases/efeitos dos fármacos , Antígenos de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Policetídeo Sintases/efeitos dos fármacos
15.
Nat Med ; 22(5): 531-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27043495

RESUMO

Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased manner. Using laser-capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas have a pro-inflammatory environment that is characterized by the presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. These findings are consistent across a set of six human subjects and in rabbits. Although the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. From the protein and lipid snapshots of human and rabbit lesions analyzed here, we hypothesize that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.


Assuntos
Eicosanoides/imunologia , Granuloma/imunologia , Inflamação/imunologia , Espécies Reativas de Oxigênio/imunologia , Tuberculose Pulmonar/imunologia , Animais , Ácido Araquidônico/metabolismo , Eicosanoides/metabolismo , Granuloma/metabolismo , Granuloma/patologia , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Microdissecção e Captura a Laser , Espectrometria de Massas , Microscopia Confocal , Proteômica , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia
16.
Emerg Infect Dis ; 22(3): 365-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26886068

RESUMO

The nontuberculous mycobacteria (NTM), defined as any mycobacterial pathogen other than Mycobacterium tuberculosis or Mycobacterium leprae, are a diverse group of pathogens that collectively cause a substantive but often unappreciated worldwide burden of illness. Although NTMs may cause illness similar to M. tuberculosis, these pathogens generally do not respond to classic tuberculosis (TB) drug regimens, resulting in misdiagnosis and poor treatment, particularly in resource-poor settings. Although a few high-quality epidemiologic surveys have been made on the topic, existing evidence suggests that NTM-associated disease is much more common than previously thought: more common than TB in the industrialized world and likely increasing in prevalence globally. Despite this evidence, these organisms remain markedly understudied, and few international grants support basic science and clinical research. Here we suggest that the considerable efforts in developing new treatments and diagnostics for TB can be harnessed in the fight against NTM-associated illnesses.


Assuntos
Antituberculosos/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/dietoterapia , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Pesquisa Biomédica , Humanos , Mycobacterium tuberculosis , Micobactérias não Tuberculosas
17.
mBio ; 6(3): e00253-15, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25944857

RESUMO

UNLABELLED: A novel type of antibacterial screening method, a target mechanism-based whole-cell screening method, was developed to combine the advantages of target mechanism- and whole-cell-based approaches. A mycobacterial reporter strain with a synthetic phenotype for caseinolytic protease (ClpP1P2) activity was engineered, allowing the detection of inhibitors of this enzyme inside intact bacilli. A high-throughput screening method identified bortezomib, a human 26S proteasome drug, as a potent inhibitor of ClpP1P2 activity and bacterial growth. A battery of secondary assays was employed to demonstrate that bortezomib indeed exerts its antimicrobial activity via inhibition of ClpP1P2: Down- or upmodulation of the intracellular protease level resulted in hyper- or hyposensitivity of the bacteria, the drug showed specific potentiation of translation error-inducing aminoglycosides, ClpP1P2-specific substrate WhiB1 accumulated upon exposure, and growth inhibition potencies of bortezomib derivatives correlated with ClpP1P2 inhibition potencies. Furthermore, molecular modeling showed that the drug can bind to the catalytic sites of ClpP1P2. This work demonstrates the feasibility of target mechanism-based whole-cell screening, provides chemical validation of ClpP1P2 as a target, and identifies a drug in clinical use as a new lead compound for tuberculosis therapy. IMPORTANCE: During the last decade, antibacterial drug discovery relied on biochemical assays, rather than whole-cell approaches, to identify molecules that interact with purified target proteins derived by genomics. This approach failed to deliver antibacterial compounds with whole-cell activity, either because of cell permeability issues that medicinal chemistry cannot easily fix or because genomic data of essentiality insufficiently predicted the vulnerability of the target identified. As a consequence, the field largely moved back to a whole-cell approach whose main limitation is its black-box nature, i.e., that it requires trial-and-error chemistry because the cellular target is unknown. We developed a novel type of antibacterial screening method, target mechanism-based whole-cell screening, to combine the advantages of both approaches. We engineered a mycobacterial reporter strain with a synthetic phenotype allowing us to identify inhibitors of the caseinolytic protease (ClpP1P2) inside the cell. This approach identified bortezomib, an anticancer drug, as a specific inhibitor of ClpP1P2. We further confirmed the specific "on-target" activity of bortezomib by independent approaches including, but not limited to, genetic manipulation of the target level (over- and underexpressing strains) and by establishing a dynamic structure-activity relationship between ClpP1P2 and growth inhibition. Identifying an "on-target" compound is critical to optimize the efficacy of the compound without compromising its specificity. This work demonstrates the feasibility of target mechanism-based whole-cell screening methods, validates ClpP1P2 as a druggable target, and delivers a lead compound for tuberculosis therapy.


Assuntos
Antituberculosos/isolamento & purificação , Bortezomib/isolamento & purificação , Mycobacterium/efeitos dos fármacos , Mycobacterium/enzimologia , Inibidores de Proteases/isolamento & purificação , Serina Endopeptidases/metabolismo , Antituberculosos/farmacologia , Bortezomib/farmacologia , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos , Ensaios de Triagem em Larga Escala , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica , Serina Endopeptidases/química
18.
PLoS Pathog ; 10(3): e1003994, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603869

RESUMO

Unlike most bacterial species, Mycobacterium tuberculosis depends on the Clp proteolysis system for survival even in in vitro conditions. We hypothesized that Clp is required for the physiologic turnover of mycobacterial proteins whose accumulation is deleterious to bacterial growth and survival. To identify cellular substrates, we employed quantitative proteomics and transcriptomics to identify the set of proteins that accumulated upon the loss of functional Clp protease. Among the set of potential Clp substrates uncovered, we were able to unambiguously identify WhiB1, an essential transcriptional repressor capable of auto-repression, as a substrate of the mycobacterial Clp protease. Dysregulation of WhiB1 turnover had a toxic effect that was not rescued by repression of whiB1 transcription. Thus, under normal growth conditions, Clp protease is the predominant regulatory check on the levels of potentially toxic cellular proteins. Our findings add to the growing evidence of how post-translational regulation plays a critical role in the regulation of bacterial physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Mycobacterium tuberculosis/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de Transcrição/metabolismo , Reação em Cadeia da Polimerase , Proteólise , Proteômica
19.
Nat Rev Drug Discov ; 11(10): 777-89, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23023677

RESUMO

Proteases have been successfully targeted for the treatment of several diseases, including hypertension, type 2 diabetes, multiple myeloma, HIV and hepatitis C virus infections. Given the demonstrated pharmacological tractability of this enzyme family and the pressing need for novel drugs to combat antibiotic resistance, proteases have also attracted interest as antibacterial targets--particularly the widely conserved intracellular bacterial degradative proteases, which are often indispensable for normal bacterial growth or virulence. This Review summarizes the roles of the key prokaryotic degradative proteases, with a focus on the initial efforts and associated challenges in developing specific therapeutic modulators of these enzymes as novel classes of antibacterial drugs.


Assuntos
Antibacterianos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Proteólise , Animais , Antibacterianos/administração & dosagem , Cristalografia por Raios X , Humanos , Proteólise/efeitos dos fármacos
20.
PLoS Pathog ; 8(2): e1002511, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22359499

RESUMO

In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy.


Assuntos
Proteínas de Bactérias/metabolismo , Viabilidade Microbiana , Mycobacterium tuberculosis/fisiologia , Serina Endopeptidases/metabolismo , Tuberculose/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Tuberculose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA