Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 25323, 2024 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455881

RESUMO

Innate defensive behaviors are essential for species survival. While these behaviors start to develop early in an individual's life, there is still much to be understood about how they evolve with advancing age. Considering that aging is often accompanied by various cognitive and physical declines, we tested the hypothesis that innate fear behaviors and underlying cerebral mechanisms are modified by aging. In our study we investigated this hypothesis by examining how aged mice respond to a looming visual threat compared to their younger counterparts. Our findings indicate that aged mice exhibit a different fear response than young mice when facing this imminent threat. Specifically, unlike young mice, aged mice tend to predominantly display freezing behavior without seeking shelter. Interestingly, this altered behavioral response in aged mice is linked to a distinct pattern of functional brain connectivity compared to young mice. Notably, our data highlights a lack of a consistent brain activation following the fear response in aged mice, suggesting that innate defensive behaviors undergo changes with aging.


Assuntos
Envelhecimento , Encéfalo , Medo , Animais , Medo/fisiologia , Envelhecimento/fisiologia , Camundongos , Encéfalo/fisiologia , Masculino , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 15(1): 4100, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773091

RESUMO

In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals - the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Hipocampo , Aprendizagem , Potenciação de Longa Duração , Optogenética , Área Tegmentar Ventral , Animais , Potenciação de Longa Duração/fisiologia , Área Tegmentar Ventral/fisiologia , Masculino , Dopamina/metabolismo , Camundongos , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Hipocampo/fisiologia , Hipocampo/metabolismo , Aprendizagem/fisiologia , Camundongos Transgênicos , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Sinapses/fisiologia , Sinapses/metabolismo , Camundongos Endogâmicos C57BL , Memória/fisiologia
3.
Eur J Neurosci ; 59(7): 1558-1566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308520

RESUMO

The excitation-inhibition imbalance manifesting as epileptic activities in Alzheimer's disease is gaining more and more attention, and several potentially involved cellular and molecular pathways are currently under investigation. Based on in vitro studies, dopamine D1-type receptors in the anterior cingulate cortex and the hippocampus have been proposed to participate in this peculiar co-morbidity in mouse models of amyloidosis. Here, we tested the implication of dopaminergic transmission in vivo in the Tg2576 mouse model of Alzheimer's disease by monitoring epileptic activities via intracranial EEG before and after treatment with dopamine antagonists. Our results show that neither the D1-like dopamine receptor antagonist SCH23390 nor the D2-like dopamine receptor antagonist haloperidol reduces the frequency of epileptic activities. While requiring further investigation, our results indicate that on a systemic level, dopamine receptors are not significantly contributing to epilepsy observed in vivo in this mouse model of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Amiloidose , Epilepsia , Camundongos , Animais , Antagonistas de Dopamina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Receptores de Dopamina D2/metabolismo , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Receptores de Dopamina D1/metabolismo , Epilepsia/tratamento farmacológico , Modelos Animais de Doenças , Amiloidose/tratamento farmacológico
4.
eNeuro ; 10(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863658

RESUMO

Mitochondria are integrative hubs central to cellular adaptive pathways. Such pathways are critical in highly differentiated postmitotic neurons, the plasticity of which sustains brain function. Consequently, defects in mitochondria and in their dynamics appear instrumental in neurodegenerative diseases and may also participate in cognitive impairments. To directly test this hypothesis, we analyzed cognitive performances in a mouse mitochondria-based disease model, because of haploinsufficiency in the mitochondrial optic atrophy type 1 (OPA1) protein involved in mitochondrial dynamics. In males, we evaluated adult hippocampal neurogenesis parameters using immunohistochemistry. We performed a battery of tests to assess basal behavioral characteristics and cognitive performances, and tested putative treatments. While in dominant optic atrophy (DOA) mouse models, the known main symptoms are late onset visual deficits, we discovered early impairments in hippocampus-dependent spatial memory attributable to defects in adult neurogenesis. Moreover, less connected adult-born hippocampal neurons showed a decrease in mitochondrial content. Remarkably, voluntary exercise or pharmacological treatment targeting mitochondrial dynamics restored spatial memory in DOA mice. Altogether, our study identifies a crucial role for OPA1-dependent mitochondrial functions in adult neurogenesis, and thus in hippocampal-dependent cognitive functions. More generally, our findings show that adult neurogenesis is highly sensitive to mild mitochondrial defects, generating impairments in spatial memory that can be detected at an early stage and counterbalanced by physical exercise and pharmacological targeting of mitochondrial dynamics. Thus, amplification of mitochondrial function at an early stage appears beneficial for late-onset neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Atrofia Óptica Autossômica Dominante , Masculino , Camundongos , Animais , Memória Espacial , Mitocôndrias/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Atrofia Óptica Autossômica Dominante/metabolismo , Hipocampo/metabolismo , Doenças Neurodegenerativas/metabolismo
5.
Transl Psychiatry ; 13(1): 227, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365183

RESUMO

Mood disorders are associated with hypothalamic-pituitary-adrenal axis overactivity resulting from a decreased inhibitory feedback exerted by the hippocampus on this brain structure. Growing evidence suggests that antidepressants would regulate hippocampal excitatory/inhibitory balance to restore an effective inhibition on this stress axis. While these pharmacological compounds produce beneficial clinical effects, they also have limitations including their long delay of action. Interestingly, non-pharmacological strategies such as environmental enrichment improve therapeutic outcome in depressed patients as in animal models of depression. However, whether exposure to enriched environment also reduces the delay of action of antidepressants remains unknown. We investigated this issue using the corticosterone-induced mouse model of depression, submitted to antidepressant treatment by venlafaxine, alone or in combination with enriched housing. We found that the anxio-depressive phenotype of male mice was improved after only two weeks of venlafaxine treatment when combined with enriched housing, which is six weeks earlier than mice treated with venlafaxine but housed in standard conditions. Furthermore, venlafaxine combined with exposure to enriched environment is associated with a reduction in the number of parvalbumin-positive neurons surrounded by perineuronal nets (PNN) in the mouse hippocampus. We then showed that the presence of PNN in depressed mice prevented their behavioral recovery, while pharmacological degradation of hippocampal PNN accelerated the antidepressant action of venlafaxine. Altogether, our data support the idea that non-pharmacological strategies can shorten the onset of action of antidepressants and further identifies PV interneurons as relevant actors of this effect.


Assuntos
Parvalbuminas , Inibidores Seletivos de Recaptação de Serotonina , Camundongos , Masculino , Animais , Cloridrato de Venlafaxina/farmacologia , Parvalbuminas/metabolismo , Serotonina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Antidepressivos/metabolismo , Interneurônios/metabolismo
7.
Neurobiol Aging ; 123: 35-48, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634385

RESUMO

The link between Alzheimer's disease (AD) and network hypersynchrony - manifesting as epileptic activities - received considerable attention in the past decade. However, several questions remain unanswered as to its mechanistic underpinnings. Therefore, our objectives were (1) to better characterise epileptic events in the Tg2576 mouse model throughout the sleep-wake cycle and disease progression via electrophysiological recordings and (2) to explore the involvement of noradrenergic transmission in this pathological hypersynchrony. Over and above confirming the previously described early presence and predominance of epileptic events during rapid-eye-movement (REM) sleep, we also show that these events do not worsen with age and are highly phase-locked to the section of the theta cycle during REM sleep where hippocampal pyramidal cells reach their highest firing probability. Finally, we reveal an antiepileptic mechanism of noradrenergic transmission via α1-adrenoreceptors that could explain the intriguing distribution of epileptic events over the sleep-wake cycle in this model, with potential therapeutic implications in the treatment of the epileptic events occurring in many AD patients.


Assuntos
Doença de Alzheimer , Epilepsia , Camundongos , Animais , Doença de Alzheimer/patologia , Camundongos Transgênicos , Sono/fisiologia , Modelos Animais de Doenças , Sono REM
8.
Cells ; 11(24)2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36552881

RESUMO

The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aß42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aß42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aß42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Astrócitos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Aprendizagem Espacial , Envelhecimento
9.
Psychopharmacology (Berl) ; 239(9): 2735-2752, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35947166

RESUMO

Major depression (MD) is one of the most common psychiatric disorders worldwide. Currently, the first-line treatment for MD targets the serotonin system but these drugs, notably the selective serotonin reuptake inhibitors, usually need 4 to 6 weeks before the benefit is felt and a significant proportion of patients shows an unsatisfactory response. Numerous treatments have been developed to circumvent these issues as venlafaxine, a mixed serotonin-norepinephrine reuptake inhibitor that binds and blocks both the SERT and NET transporters. Despite this pharmacological profile, it is difficult to have a valuable insight into its ability to produce more robust efficacy than single-acting agents. In this review, we provide an in-depth characterization of the pharmacological properties of venlafaxine from in vitro data to preclinical and clinical efficacy in depressed patients and animal models of depression to propose an indirect comparison with the most common antidepressants. Preclinical studies show that the antidepressant effect of venlafaxine is often associated with an enhancement of serotonergic neurotransmission at low doses. High doses of venlafaxine, which elicit a concomitant increase in 5-HT and NE tone, is associated with changes in different forms of plasticity in discrete brain areas. In particular, the hippocampus appears to play a crucial role in venlafaxine-mediated antidepressant effects notably by regulating processes such as adult hippocampal neurogenesis or the excitatory/inhibitory balance. Overall, depending on the dose used, venlafaxine shows a high efficacy on depressive-like symptoms in relevant animal models but to the same extent as common antidepressants. However, these data are counterbalanced by a lower tolerance. In conclusion, venlafaxine appears to be one of the most effective treatments for treatment of major depression. Still, direct comparative studies are warranted to provide definitive conclusions about its superiority.


Assuntos
Transtorno Depressivo Maior , Serotonina , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Cicloexanóis/farmacologia , Cicloexanóis/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Cloridrato de Venlafaxina/farmacologia , Cloridrato de Venlafaxina/uso terapêutico
10.
PLoS One ; 17(7): e0270981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802727

RESUMO

GABAergic interneurons tend to diversify into similar classes across telencephalic regions. However, it remains unclear whether the electrophysiological and molecular properties commonly used to define these classes are discriminant in the hilus of the dentate gyrus. Here, using patch-clamp combined with single cell RT-PCR, we compare the relevance of commonly used electrophysiological and molecular features for the clustering of GABAergic interneurons sampled from the mouse hilus and primary sensory cortex. While unsupervised clustering groups cortical interneurons into well-established classes, it fails to provide a convincing partition of hilar interneurons. Statistical analysis based on resampling indicates that hilar and cortical GABAergic interneurons share limited homology. While our results do not invalidate the use of classical molecular marker in the hilus, they indicate that classes of hilar interneurons defined by the expression of molecular markers do not exhibit strongly discriminating electrophysiological properties.


Assuntos
Giro Denteado , Neurônios GABAérgicos , Animais , Interneurônios/metabolismo , Camundongos
11.
Learn Mem ; 29(6): 142-145, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35577394

RESUMO

Dopamine participates in encoding memories and could either encode rewarding/aversive value of unconditioned stimuli or act as a novelty signal triggering contextual learning. Here we show that intraperitoneal injection of the dopamine D1/5R antagonist SCH23390 impairs contextual fear conditioning and tone-shock association, while intrahippocampal injection only impairs contextual fear conditioning. By using the context pre-exposure facilitation effect test, we show that SCH23390 is able to block the encoding of the context during the pre-exposure phase. Thus, we provide additional evidence that dopamine is involved in encoding conjunctive representations of new contexts.


Assuntos
Dopamina , Receptores de Dopamina D1 , Condicionamento Clássico , Antagonistas de Dopamina/farmacologia , Medo , Aprendizagem
12.
iScience ; 25(3): 103895, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243253

RESUMO

Parvalbumin (PV)-expressing interneurons which are often associated with the specific extracellular matrix perineuronal net (PNN) play a critical role in the alteration of brain activity and memory performance in Alzheimer's disease (AD). The integrity of these neurons is crucial for normal functioning of the hippocampal subfield CA2, and hence, social memory formation. Here, we find that social memory deficits of mouse models of AD are associated with decreased presence of PNN around PV cells and long-term synaptic plasticity in area CA2. Furthermore, single local injection of the growth factor neuregulin-1 (NRG1) is sufficient to restore both PV/PNN levels and social memory performance of these mice. Thus, the PV/PNN disruption in area CA2 could play a causal role in social memory deficits of AD mice, and activating PV cell pro-maturation pathways may be sufficient to restore social memory.

13.
Cereb Cortex ; 32(7): 1365-1378, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34491298

RESUMO

We investigated the detrimental effects of chronic consumption of sweet or sweetened beverages in mice. We report that consumption of beverages containing small amounts of sucrose during several weeks impaired reward systems. This is evidenced by robust changes in the activation pattern of prefrontal brain regions associated with abnormal risk-taking and delayed establishment of decision-making strategy. Supporting these findings, we find that chronic consumption of low doses of artificial sweeteners such as saccharin disrupts brain regions' activity engaged in decision-making and reward processes. Consequently, this leads to the rapid development of inflexible decisions, particularly in a subset of vulnerable individuals. Our data also reveal that regular consumption, even at low doses, of sweet or sweeteners dramatically alters brain neurochemistry, i.e., dopamine content and turnover, and high cognitive functions, while sparing metabolic regulations. Our findings suggest that it would be relevant to focus on long-term consequences on the brain of sweet or sweetened beverages in humans, especially as they may go metabolically unnoticed.


Assuntos
Bebidas Adoçadas com Açúcar , Animais , Bebidas , Cognição , Camundongos , Recompensa , Paladar/fisiologia
15.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639085

RESUMO

In recent decades, neurogenesis in the adult brain has been well demonstrated in a number of animal species, including humans. Interestingly, work with rodents has shown that adult neurogenesis in the dentate gyrus (DG) of the hippocampus is vital for some cognitive aspects, as increasing neurogenesis improves memory, while its disruption triggers the opposite effect. Adult neurogenesis declines with age and has been suggested to play a role in impaired progressive learning and memory loss seen in Alzheimer's disease (AD). Therefore, therapeutic strategies designed to boost adult hippocampal neurogenesis may be beneficial for the treatment of AD. The precursor forms of neurotrophins, such as pro-NGF, display remarkable increase during AD in the hippocampus and entorhinal cortex. In contrast to mature NGF, pro-NGF exerts adverse functions in survival, proliferation, and differentiation. Hence, we hypothesized that pro-NGF and its p75 neurotrophin receptor (p75NTR) contribute to disrupting adult hippocampal neurogenesis during AD. To test this hypothesis, in this study, we took advantage of the availability of mouse models of AD (APP/PS1), which display memory impairment, and AD human samples to address the role of pro-NGF/p75NTR signaling in different aspects of adult neurogenesis. First, we observed that DG doublecortin (DCX) + progenitors express p75NTR both, in healthy humans and control animals, although the percentage of DCX+ cells are significantly reduced in AD. Interestingly, the expression of p75NTR in these progenitors is significantly decreased in AD conditions compared to controls. In order to assess the contribution of the pro-NGF/p75NTR pathway to the memory deficits of APP/PS1 mice, we injected pro-NGF neutralizing antibodies (anti-proNGF) into the DG of control and APP/PS1 mice and animals are subjected to a Morris water maze test. Intriguingly, we observed that anti-pro-NGF significantly restored memory performance of APP/PS1 animals and significantly increase the percentage of DCX+ progenitors in the DG region of these animals. In summary, our results suggest that pro-NGF is involved in disrupting spatial memory in AD, at least in part by blocking adult neurogenesis. Moreover, we propose that adult neurogenesis alteration should be taken into consideration for better understanding of AD pathology. Additionally, we provide a new molecular entry point (pro-NGF/p75NTR signaling) as a promising therapeutic target in AD.


Assuntos
Doença de Alzheimer/complicações , Encéfalo/patologia , Transtornos da Memória/patologia , Fator de Crescimento Neural/metabolismo , Neurogênese , Neurônios/patologia , Precursores de Proteínas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Fator de Crescimento Neural/genética , Neurônios/metabolismo , Precursores de Proteínas/genética , Memória Espacial , Adulto Jovem
16.
Neuron ; 107(3): 397-398, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758443

RESUMO

Memory formation is a dynamic process and sleep is part of it. Consolidation of memories relies on finely orchestrated brain activities occurring during the post-learning sleep period. In this issue of Neuron, Kumar and colleagues provide evidence that the activity of adult-born hippocampal neurons during REM sleep is critical for the consolidation of episodic memory.


Assuntos
Consolidação da Memória , Hipocampo , Neurônios , Sono , Sono REM
17.
Stem Cell Reports ; 15(1): 256-273, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32589876

RESUMO

The hippocampus is important for memory formation and is severely affected in the brain with Alzheimer disease (AD). Our understanding of early pathogenic processes occurring in hippocampi in AD is limited due to tissue unavailability. Here, we report a chemical approach to rapidly generate free-floating hippocampal spheroids (HSs), from human induced pluripotent stem cells. When used to model AD, both APP and atypical PS1 variant HSs displayed increased Aß42/Aß40 peptide ratios and decreased synaptic protein levels, which are common features of AD. However, the two variants differed in tau hyperphosphorylation, protein aggregation, and protein network alterations. NeuroD1-mediated gene therapy in HSs-derived progenitors resulted in modulation of expression of numerous genes, including those involved in synaptic transmission. Thus, HSs can be harnessed to unravel the mechanisms underlying early pathogenic changes in the hippocampi of AD patients, and provide a robust platform for the development of therapeutic strategies targeting early stage AD.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Esferoides Celulares/patologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Estudos de Casos e Controles , Terapia Genética , Humanos , Neurônios/patologia , Fenótipo , Presenilina-1/genética , Presenilina-1/metabolismo , Agregados Proteicos , Proteoma/metabolismo , Proteômica , Transcrição Gênica
18.
Artigo em Inglês | MEDLINE | ID: mdl-32298784

RESUMO

While the aging of the population is a sign of progress for societies, it also carries its load of negative aspects. Among them, cognitive decline and in particular memory loss is a common feature of non-pathological aging. Autobiographical memories, which rely on the hippocampus, are a primary target of age-related cognitive decline. Here, focusing on the neurobiological mechanisms of memory formation and storage, we describe how hippocampal functions are altered across time in non-pathological mammalian brains. Several hallmarks of aging have been well described over the last decades; among them, we consider altered synaptic communication and plasticity, reduction of adult neurogenesis and epigenetic alterations. Building on the neurobiological processes of cognitive aging that have been identified to date, we review some of the strategies based on lifestyle manupulation allowing to address age-related cognitive deficits.


Assuntos
Envelhecimento/psicologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiopatologia , Transtornos da Memória/psicologia , Transtornos da Memória/terapia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Transtornos da Memória/fisiopatologia , Memória Episódica , Neurogênese
19.
J Neurosci ; 39(30): 5935-5948, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31160539

RESUMO

Epidemiological studies indicate that insulin resistance (IR), a hallmark of type 2 diabetes, is associated with an increased risk of major depression. Here, we demonstrated that male mice fed a high-fat diet (HFD) exhibited peripheral metabolic impairments reminiscent of IR accompanied by elevated circulating levels of branched-chain amino acids (BCAAs), whereas both parameters were normalized by chronic treatment with metformin (Met). Given the role of BCAAs in the regulation of tryptophan influx into the brain, we then explored the activity of the serotonin (5-HT) system. Our results indicated that HFD-fed mice displayed impairment in the electrical activity of dorsal raphe 5-HT neurons, attenuated hippocampal extracellular 5-HT concentrations and anxiety, one of the most visible and early symptoms of depression. On the contrary, Met stimulated 5-HT neurons excitability and 5-HT neurotransmission while hindering HFD-induced anxiety. Met also promoted antidepressant-like activities as observed with fluoxetine. In light of these data, we designed a modified HFD in which BCAA dietary supply was reduced by half. Deficiency in BCAAs failed to reverse HFD-induced metabolic impairments while producing antidepressant-like activity and enhancing the behavioral response to fluoxetine. Our results suggest that Met may act by decreasing circulating BCAAs levels to favor serotonergic neurotransmission in the hippocampus and promote antidepressant-like effects in mice fed an HFD. These findings also lead us to envision that a diet poor in BCAAs, provided either alone or as add-on therapy to conventional antidepressant drugs, could help to relieve depressive symptoms in patients with metabolic comorbidities.SIGNIFICANCE STATEMENT Insulin resistance in humans is associated with increased risk of anxiodepressive disorders. Such a relationship has been also found in rodents fed a high-fat diet (HFD). To determine whether insulin-sensitizing strategies induce anxiolytic- and/or antidepressant-like activities and to investigate the underlying mechanisms, we tested the effects of metformin, an oral antidiabetic drug, in mice fed an HFD. Metformin reduced levels of circulating branched-chain amino acids, which regulate tryptophan uptake within the brain. Moreover, metformin increased hippocampal serotonergic neurotransmission while promoting anxiolytic- and antidepressant-like effects. Moreover, a diet poor in these amino acids produced similar beneficial behavioral property. Collectively, these results suggest that metformin could be used as add-on therapy to a conventional antidepressant for the comorbidity between metabolic and mental disorders.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Resistência à Insulina/fisiologia , Metformina/uso terapêutico , Aminoácidos de Cadeia Ramificada/antagonistas & inibidores , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Ansiedade/sangue , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Depressão/sangue , Depressão/tratamento farmacológico , Depressão/psicologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
20.
Psychopharmacology (Berl) ; 236(7): 2069-2082, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30879119

RESUMO

RATIONALE: Pregabalin is a psychoactive drug indicated in the treatment of epilepsy, neuropathic pain, and generalized anxiety disorders. Pregabalin acts on different neurotransmission systems by inactivating the alpha2-delta subunit of voltage-gated calcium channels. In light of this pharmacological property, the hypothesis has been raised that pregabalin may regulate the mesolimbic dopamine pathway and thereby display a potential for misuse or abuse as recently observed in humans. Although some preclinical data support this possibility, the rewarding properties of gabapentinoid are still a matter for debate. OBJECTIVE: The aim of this work was to evaluate the rewarding properties of pregabalin and to determine its putative mechanism of action in healthy mice. RESULTS: Pregabalin alone (60 mg/kg; s.c.) produced a rewarding effect in the conditioned place preference (CPP) test albeit to a lower extent than cocaine (30 mg/kg; s.c.). Interestingly, when assessing locomotor activity in the CPP, the PGB60 group, similarly to the cocaine group, showed an increased locomotor activity. In vivo single unit extracellular recording showed that pregabalin had mixed effects on dopamine (DA) neuronal activity in the ventral tegmental area since it decreased the activity of 50% of neurons and increased 28.5% of them. In contrast, cocaine decreased 75% of VTA DA neuronal activity whereas none of the neurons were activated. Intracerebal microdialysis was then conducted in awake freely mice to determine to what extent such electrophysiological parameters influence the extracellular DA concentrations ([DA]ext) in the nucleus accumbens. Although pregabalin failed to modify this parameter, cocaine produced a robust increase (800%) in [DA]ext. CONCLUSIONS: Collectively, these electrophysiological and neurochemical experiments suggest that the rewarding properties of pregabalin result from a different mode of action than that observed with cocaine. Further experiments are warranted to determine whether such undesirable effects can be potentiated under pathological conditions such as neuropathic pain, mood disorders, or addiction and to identify the key neurotransmitter system involved.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Núcleo Accumbens/metabolismo , Pregabalina/farmacologia , Recompensa , Área Tegmentar Ventral/metabolismo , Analgésicos/farmacologia , Animais , Cocaína/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise/métodos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA