Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 360: 142451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801904

RESUMO

Nanobubbles have been increasingly used in various applications involving porous media, such as groundwater remediation and irrigation. However, the fundamental scientific knowledge regarding the interactions between nanobubbles and the media is still limited. The interactions can be repulsive, attractive, or inert, and can involve reversible or irreversible attachment as well as destructive mechanisms. Specifically, the stability and mobility of nanobubbles in porous media is expected to be dependent on the dynamic conditions and the physicochemical properties of the porous media, solutions, and nanobubbles themselves. In this study, we investigated how changes in solution chemistry (pH, ionic strength, and valence) and media characteristics (size and wettability) affect the size and concentration of nanobubbles under dynamic conditions using column experiments. Quartz crystal microbalance with dissipation monitoring provided a deeper understanding of irreversible and elastic nanobubbles' interactions with silica-coated surfaces. Our findings suggest that nanobubbles are less mobile in solutions of higher ionic strength and valence, acidic pH and smaller porous media sizes, while the wettability of porous media has a negligible influence on the retention of nanobubbles. Overall, our findings provide insights into the underlying mechanisms of nanobubble interactions and suggest potential strategies to optimize their delivery in various applications.


Assuntos
Molhabilidade , Porosidade , Concentração Osmolar , Concentração de Íons de Hidrogênio , Dióxido de Silício/química , Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Agricultura , Técnicas de Microbalança de Cristal de Quartzo
2.
Environ Res ; 231(Pt 1): 115999, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105294

RESUMO

The main reason for the deterioration of membrane operation during water purification processes is biofouling, which has therefore been extensively studied. Biofouling was shown to reduce membrane performance reflected by permeate flux decline, reduced selectivity, membrane biodegradation, and consequently, an increase in energy consumption. Studies of biofouling focused on the identification of the assembled microbial communities, the excretion of extracellular polymeric substances (EPS), and their combined role in reduced membrane performance and lifetime. However, the link between the structure and function of biofouling communities has not been elucidated to date. Here, we provide a novel insight, suggesting that bacterial functions rather than composition control biofouling traits on reverse osmosis (RO) membranes. We studied the potential activity of RO biofilms at metatranscriptome resolution, accompanied by the morphology and function of the biofouling layer over time, including microscopy and EPS composition, adhesion, and viscoelastic properties. To that end, we cultivated natural multispecies biofilms in RO membranes under treated wastewater flow and extracted RNA to study their taxonomies and gene expression profiles. Concomitantly, the biofilm structure was visualized using both scanning electron microscopy and laser scanning confocal microscopy. We also used quartz crystal microbalance with dissipation to characterize the affinity of EPS to membrane-mimetic sensors and evaluated the viscoelasticity of the Ex-Situ EPS layer formed on the sensor. Our results showed that different active bacterial taxa across five taxonomic classes were assembled on the RO membrane, while the composition shifted between 48 and 96 h. However, regardless of the composition, the maturation of the biofilm resulted in the expression of similar gene families tightly associated with the temporal kinetics of the EPS composition, adhesion, and viscoelasticity. Our findings highlight the temporal selection of specific microbial functions rather than composition, featuring the adhesion kinetics and viscoelastic properties of the RO biofilm.


Assuntos
Incrustação Biológica , Purificação da Água , Membranas Artificiais , Biofilmes , Bactérias/genética , Purificação da Água/métodos , Osmose
3.
Microb Ecol ; 86(1): 474-484, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35788422

RESUMO

Rain events in arid environments are highly unpredictable and intersperse extended periods of drought. Therefore, tracking changes in desert soil bacterial communities during rain events, in the field, was seldom attempted. Here, we assessed rain-mediated dynamics of active bacterial communities in the Negev Desert biological soil crust (biocrust). Biocrust samples were collected during, and after a medium rainfall and dry soil was used as a control; we evaluated the changes in active bacterial composition, potential function, potential photosynthetic activity, and extracellular polysaccharide (EPS) production. We hypothesized that rain would activate the biocrust phototrophs (mainly Cyanobacteria), while desiccation would inhibit their activity. In contrast, the biocrust Actinobacteria would decline during rewetting and revive with desiccation. Our results showed that hydration increased chlorophyll content and EPS production. As expected, biocrust rewetting activated Cyanobacteria, which replaced the former dominant Actinobacteria, boosting potential autotrophic functions. However, desiccation of the biocrust did not immediately change the bacterial composition or potential function and was followed by a delayed decrease in chlorophyll and EPS levels. This dramatic shift in the community upon rewetting led to modifications in ecosystem services. We propose that following a rain event, the response of the active bacterial community lagged behind the biocrust water content due to the production of EPS which delayed desiccation and temporarily sustained the biocrust community activity.


Assuntos
Cianobactérias , Ecossistema , Dessecação , Clima Desértico , Cianobactérias/fisiologia , Clorofila , Solo , Microbiologia do Solo
4.
Plants (Basel) ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501368

RESUMO

Duckweeds (Lemnaceae) are tiny plants that float on aquatic surfaces and are typically isolated from temperate and equatorial regions. Yet, duckweed diversity in Mediterranean and arid regions has been seldom explored. To address this gap in knowledge, we surveyed duckweed diversity in Israel, an ecological junction between Mediterranean and arid climates. We searched for duckweeds in the north and center of Israel on the surface of streams, ponds and waterholes. We collected and isolated 27 duckweeds and characterized their morphology, molecular barcodes (atpF-atpH and psbK-psbI) and biochemical features (protein content and fatty acids composition). Six species were identified-Lemna minor, L. gibba and Wolffia arrhiza dominated the duckweed populations, and together with past sightings, are suggested to be native to Israel. The fatty acid profiles and protein content further suggest that diverged functions have attributed to different haplotypes among the identified species. Spirodela polyrhiza, W. globosa and L. minuta were also identified but were rarer. S. polyrhiza was previously reported in our region, thus, its current low abundance should be revisited. However, L. minuta and W. globosa are native to America and Far East Asia, respectively, and are invasive in Europe. We hypothesize that they may be invasive species to our region as well, carried by migratory birds that disperse them through their migration routes. This study indicates that the duckweed population in Israel's aquatic environments consists of both native and transient species.

5.
Environ Sci Technol ; 56(20): 14763-14773, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197031

RESUMO

Extracellular polymeric substances (EPSs) can conform and orient on the surface according to the applied aquatic conditions. While pH elevation usually removes EPSs from membranes, small changes in pH can change the adsorbed EPS conformation and orientation, resulting in a decrease in membrane permeability. Accordingly, EPS layers were tested with localized surface plasmon resonance (LSPR) sensing and quartz crystal microbalance with dissipation monitoring (QCM-D) using a hybrid sensor. A novel membrane-mimetic hybrid QCM-D-LSPR sensor was designed to indicate both "dry" mass and mechanical load ("wet" mass) of the adsorbed EPS. The effect of pH on the EPS layer's viscoelastic properties and hydrated thickness analyzed by QCM-D corroborates with the shift in EPS areal concentration, ΓS, and the associated EPS conformation, analyzed by LSPR. As pH elevates, the processes of (i) elevation in EPS layer's thickness (QCM-D) and (ii) decrease in the EPS areal density, ΓS (LSPR), provide a clear indication for changes in EPS conformation, which decrease the effective ultrafiltration (UF) membrane pore diameter. This decrease in the pore diameter together with the increase in surface hydrophobicity elevates UF membrane hydraulic resistance.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Ultrafiltração , Adsorção , Concentração de Íons de Hidrogênio , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA