Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824446

RESUMO

Host plants can strongly influence the population performance of insects. Here, we investigated the development, survival, and oviposition of Scirtothrips dorsalis Hood on 6 host plants-Camellia sinensis ( L.) Kuntze (Ericales: Theaceae), Rosa chinensis Jacq. (Rosales: Rosaceae), Capsicum annuum L. (Solanales: Solanaceae), Eustoma grandiflorum (Hook.) G.Don (Gentianales: Gentianaceae), Glycine max (L.) Merr. (Fabales: Fabaceae), and Cucumis sativus L. (Cucurbitales: Cucurbitaceae), and constructed life tables for S. dorsalis on each plant. Significant differences in S. dorsalis development on the host species were observed. The mean developmental period from egg to adult was 11.45 ±â€…0.12 days, 11.24 ±â€…0.13 days, 12.08 ±â€…0.15 days, 12.28 ±â€…0.12 days, 12.67 ±â€…0.10 days, and 13.03 ±â€…0.11 days on C. sinensis, R. chinensis, C. annuum, E. grandiflorum, G. max, and C. sativus, respectively. Significant differences in survival of S. dorsalis were observed, namely, C. sinensis ≈ R. chinensis > E. grandiflorum ≈ C. annuum > G. max > C. sativus. The highest and lowest fecundities of S. dorsalis were recorded on R. chinensis (60.44 ±â€…1.53) and C. sativus (28.64 ±â€…1.02), respectively. Both of the net reproductive rate (R0) and intrinsic rate of increase (rm) of S. dorsalis were the highest on R. chinensis, with the values of 27.63 ±â€…0.58 and 0.142 ±â€…0.002, respectively; while the lowest on C. sativus, with the values of 8.81 ±â€…0.12 and 0.092 ±â€…0.003, respectively. Thus, R. chinensis was found to be the most suitable host, but C. sativus was the least suitable, for population development of S. dorsalis. Our results provide important information for the key control of S. dorsalis among different host plants.

2.
Infect Genet Evol ; 122: 105608, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796047

RESUMO

Several studies have showed that the nucleotide and dinucleotide composition of viruses possibly follows their host species or protein coding region. Nevertheless, the influence of viral segment on viral nucleotide and dinucleotide composition is still unknown. Here, we explored through tomato spotted wilt virus (TSWV), a segmented virus that seriously threatens the production of tomatoes all over the world. Through nucleotide composition analysis, we found the same over-representation of A across all viral segments at the first and second codon position, but it exhibited distinct in segments at the third codon position. Interestingly, the protein coding regions which encoded by the same or different segments exhibit obvious distinct nucleotide preference. Then, we found that the dinucleotides UpG and CpU were overrepresented and the dinucleotides UpA, CpG and GpU were underrepresented, not only in the complete genomic sequences, but also in different segments, protein coding regions and host species. Notably, 100% of the data investigated here were predicted to the correct viral segment and protein coding region, despite the fact that only 67% of the data analyzed here were predicted to the correct viral host species. In conclusion, in case study of TSWV, nucleotide composition and dinucleotide preference of segment viruses are more strongly dependent on segment and protein coding region than on host species. This research provides a novel perspective on the molecular evolutionary mechanisms of TSWV and provides reference for future research on genetic diversity of segmented viruses.


Assuntos
Genoma Viral , Nucleotídeos , Solanum lycopersicum , Tospovirus , Tospovirus/genética , Solanum lycopersicum/virologia , Nucleotídeos/genética , Doenças das Plantas/virologia , RNA Viral/genética
4.
Pest Manag Sci ; 79(9): 3239-3249, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37085951

RESUMO

BACKGROUND: Different thrips species can co-occur on the same flowers with different dominance degrees. To accurately evaluate the population performance on different thrips species on Magnolia grandiflora flowers, we investigated the diversity of thrips species and their population dynamics both in the field and laboratory. In addition, the activities of detoxifying and protective enzymes in thrips were also measured. RESULTS: Field investigations revealed that four thrips species (Thrips hawaiiensis, Thrips flavidulus, Frankliniella occidentalis, and Thrips coloratus) coexisted on M. grandiflora flowers. They were ranked, from highest population density to lowest, as follows: T. hawaiiensis > T. flavidulus > F. occidentalis > T. coloratus. In laboratory investigations, the species were ranked, from fastest developmental rates to slowest, as follows: F. occidentalis > T. hawaiiensis > T. flavidulus > T. coloratus; and from largest population size to smallest, as follows: T. hawaiiensis > F. occidentalis > T. flavidulus > T. coloratus. Biochemistry assays showed that the four species differed in their activities of detoxifying enzymes (carboxylesterase, glutathione-S-transferase, and cytochrome P450) and protective enzymes (superoxide dismutase, peroxidase) in both laboratory and field strains. CONCLUSION: Differences in population performance among these four thrips on M. grandiflora may be related to their activity levels of physiological enzymes. The variations in thrips population performance between the field and the laboratory could be due to differences in environmental conditions. T. hawaiiensis showed a strong host preference for M. grandiflora, and thus it has the potential to be a dangerous pest in horticultural plants. © 2023 Society of Chemical Industry.


Assuntos
Magnolia , Tisanópteros , Animais , Tisanópteros/fisiologia , Ranunculales , Plantas , Flores
5.
Insect Sci ; 30(1): 197-207, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35499984

RESUMO

The potato tuber moth, Phthorimaea operculella, is the most damaging potato pest in the world and is difficult to control as the larvae are internal feeders in the foliage and tubers. Entomopathogenic fungi that colonize plants as endophytes have lethal and sublethal pathological effects on insect pests. We show that Beauveria bassiana colonizes the aerial parts of potato plants endophytically after inoculation through soil drenching. Endophytic B. bassiana persisted in potato foliage for more than 50 days postinoculation. Bioassays indicated that foliage of B. bassiana-inoculated potato plants were pathogenic against larvae of P. operculella. Sublethal experiments indicated that B. bassiana negatively affected the growth, development, and reproduction of P. operculella. Development experiments showed that the weight of P. operculella pupae reared on B. bassiana-colonized potato plants (4.25 mg) was significantly less than that of those reared on uninoculated control plants (8.89 mg). Compared with newly eclosed larvae fed on control plants, those fed on B. bassiana-inoculated plants had significantly lower survivorship, with only 17.8% developing to the adult stage. Oviposition of P. operculella females reared on B. bassiana endophytically colonized plants was significantly lower (35 eggs/female) than of those reared on uninoculated plants (115 eggs/female). This study demonstrates that endophytic B. bassiana can be a potential biological control agent for the control and management of P. operculella. Comparing pupal weights of P. operculella reared on potato plants inoculated with the B. bassiana strain GZGY-1-3 and on untreated control plants, pupae from the control plants were significantly heavier than those from treated plants.


Assuntos
Beauveria , Mariposas , Solanum tuberosum , Feminino , Animais , Endófitos , Virulência , Larva , Controle Biológico de Vetores
6.
J Econ Entomol ; 115(5): 1620-1626, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053006

RESUMO

Host plant species will influence the population and physiological performance of insects. Frankliniella occidentalis is a well-known invasive pest commonly found on flowering plants. Herein, the population development of F. occidentalis was investigated on the flowers of different Rosa chinensis cultivars (Ruby, Love, Parade, Pink Peace, and Mohana), and the digestive enzyme activities in thrips were measured after feeding on these flowers. The developmental times of F. occidentalis from egg to adult were 10.07, 10.37, 11.64, 10.66, and 10.90 d on Ruby, Love, Parade, Pink Peace, and Mohana, respectively. Significant differences in fecundity were also observed, with the greatest fecundity levels of F. occidentalis on Ruby (82.96) and the lowest on Mohana (63.40). F. occidentalis showed the greatest R0 on Ruby (43.57), followed by Love (36.46), Parade (33.00), Pink Peace (27.97), and Mohana (23.21). The rm showed a similar trend, with values of 0.156, 0.145, 0.141, 0.134, and 0.130, respectively. There were significant differences in digestive enzyme activities in F. occidentalis on different flowers, and different digestive enzymes showed different performance among these plants. The highest amylase and lipase activities in F. occidentalis were on Ruby, on which F. occidentalis had the fastest development rate and the highest R0, whereas the highest trypsin activity was on Pink Peace. All three digestive enzymes in thrips showed the lowest activities on Mohana. The varied population development of F. occidentalis associated with R. chinensis cultivars may be related to their digestive enzyme performance, which plays important roles in nutrient metabolism and insect growth.


Assuntos
Rosa , Tisanópteros , Amilases , Animais , Fenômenos Fisiológicos do Sistema Digestório , Flores , Insetos , Lipase , Plantas , Tisanópteros/fisiologia , Tripsina
7.
J Econ Entomol ; 114(4): 1588-1596, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34240149

RESUMO

Psix saccharicola (Mani) and Trissolcus semistriatus (Nees) are the most abundant eggs parasitoids of the stink bug, Acrosternum arabicum Wagner, in pistachio orchards and have the potential to contribute to their suppression. However, treatment of orchards with broad-spectrum insecticides may greatly reduce populations of these beneficial natural enemies. Therefore, we conducted risk assessments and evaluated sublethal impacts of two insecticides routinely used in pistachio orchards: the organophosphate fenitrothion and a formulated mixture of the neonicotinoid thiamethoxam and the pyrethroid lambda-cyhalothrin on parasitism success, emergence and sex ratio of P. saccharicola and T. semistriatus. Based on the values of their risk quotients (RQ), which are derived from toxicity data, the two insecticide products would be classified as slightly-to-moderately toxic although an alternative metric, the safety factor (SF), showed them to be highly risky. Assessments of sublethal effects on adult wasps showed that insecticide exposure significantly reduced their ability to successfully parasitize stink bug eggs, and exposure of adult females reduced the emergence, survival, and proportion of females of their progeny, which could disrupt biological control for an extended period of time. Analysis of the decreased emergence and parasitism for P. saccharicola and T. semistriatus in accordance with the standards of the International Organization for Biological Control (IOBC) indicate that fenitrothion is slightly harmful to both parasitoid species whereas the mixture of thiamethoxam + lambda-cyhalothrin is moderately harmful. These findings will be useful for integrating insecticides and egg parasitoids into a comprehensive integrated pest management program for managing stink bugs populations in pistachio orchards.


Assuntos
Hemípteros , Heterópteros , Himenópteros , Inseticidas , Pistacia , Vespas , Animais , Ecossistema , Inseticidas/toxicidade , Óvulo
8.
J Econ Entomol ; 114(1): 33-39, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33140826

RESUMO

Pistacia vera L. is one of the most important horticultural crops in Iran. The stink bugs Acrosternum arabicum and Brachynema germari are two of the key pests that cause significant direct and indirect damage on Pistacia vera. Egg parasitoids have been considered as potential biological control agents of pistachio green stink bugs. Among them, Trissolcus semistriatus and Psix saccharicola are the most abundant and efficient parasitoid for A. arabicum in pistachio orchards. In this study, we assessed lethal and sublethal effects of two commonly used insecticide products (fenitrothion and a binary mixture of lambda-cyhalothrin + thiamethoxam) on these two parasitoid wasps under laboratory conditions. The median lethal concentration (LC50) values for fenitrothion and thiamethoxam + lambda-cyhalothrin in P. saccharicola and T. semistriatus were estimated as 1.03, 0.48 and 0.87, 0.98 mg a.i./liter, respectively. In terms of sublethal effects, insecticide treatments altered the type of functional response from type III to type II in T. semistriatus. However, P. saccharicola exhibited a type II functional to density of A. arabicum for all treatments, although attack rates were lower for insecticide-exposed wasps while handling times increased. Our results show that sublethal effects of insecticides further reduce the efficacy of biological control agents. Effective integrated pest management programs should avoid antagonistic interactions between chemical and biological control methods. The results of this study provide useful information to develop comprehensive integrated pest management programs for stink bugs in pistachio orchards.


Assuntos
Heterópteros , Inseticidas , Vespas , Animais , Inseticidas/toxicidade , Irã (Geográfico) , Óvulo
9.
Evol Appl ; 13(10): 2740-2753, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294020

RESUMO

Changing climate and land-use practices have the potential to bring previously isolated populations of pest insects into new sympatry. This heightens the need to better understand how differing patterns of host-plant association, and unique endosymbionts, serve to promote genetic isolation or integration. We addressed these factors in populations of potato psyllid, Bactericera cockerelli (Sulc), a generalist herbivore that vectors a bacterial pathogen (Candidatus Liberibacter solanacearum, causal pathogen of zebra chip disease) of potato (Solanum tuberosum L.). Genome-wide SNP data revealed two major genetic clusters-psyllids collected from potato crops were genetically similar to psyllids found on a common weed, Lycium spp., but dissimilar from those found on another common non-crop host, Solanum dulcamara L. Most psyllids found on Lycium spp. and potato represented a single mitochondrial cytochrome oxidase I (COI) haplotype that has been suggested to not be native to the region, and whose arrival may have been concurrent with zebra chip disease first emerging. The putatively introduced COI haplotype usually co-occurred with endosymbiotic Wolbachia, while the putatively resident COI haplotype generally did not. Genetic intermediates between the two genetic populations of insects were rare, consistent with recent sympatry or reproductive isolation, although admixture patterns of apparent hybrids were consistent with introgression of genes from introduced into resident populations. Our results suggest that both host-plant associations and endosymbionts are shaping the population genetic structure of sympatric psyllid populations associated with different non-crop hosts. It is of future interest to explicitly examine vectorial capacity of the two populations and their potential hybrids, as population structure and hybridization might alter regional vector capacity and disease outbreaks.

10.
Insect Sci ; 27(4): 626-645, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453663

RESUMO

Western flower thrip, Frankliniella occidentalis (Pergande), is among the most economically important agricultural pests globally, attacking a wide range of vegetable and horticultural crops. In addition to causing extensive crop damage, the species is notorious for vectoring destructive plant viruses, mainly belonging to the genera Orthotospovirus, Ilarvirus, Alphacarmovirus and Machlomovirus. Once infected by orthotospoviruses, thrips can remain virulent throughout their lifespan and continue transmitting viruses to host plants when and wherever they feed. These irruptive viral outbreaks in crops will permanently disrupt functional integrated pest management systems, and typically require a remedial treatment involving insecticides, contributing to further development of insecticide resistance. To mitigate against this continuing cycle, the most effective management is early and comprehensive surveillance of the pest species and recognition of plant viruses in the field. This review provides information on the pest status of F. occidentalis, discusses the current global status of the viruses vectored by this thrip species, examines the mechanisms involved in transmitting virus-induced diseases by thrips, and reviews different management strategies, highlighting the potential management tactics developed for various cropping systems. The early surveillance and the utilization of potential methods for control of both F. occidentalis and viruses are proposed.


Assuntos
Controle de Insetos , Inseticidas/uso terapêutico , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Tisanópteros/fisiologia , Distribuição Animal , Animais , Espécies Introduzidas , Tisanópteros/virologia
11.
Annu Rev Entomol ; 65: 17-37, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31536711

RESUMO

Western flower thrips, Frankliniella occidentalis, first arose as an important invasive pest of many crops during the 1970s-1980s. The tremendous growth in international agricultural trade that developed then fostered the invasiveness of western flower thrips. We examine current knowledge regarding the biology of western flower thrips, with an emphasis on characteristics that contribute to its invasiveness and pest status. Efforts to control this pest and the tospoviruses that it vectors with intensive insecticide applications have been unsuccessful and have created significant problems because of the development of resistance to numerous insecticides and associated outbreaks of secondary pests. We synthesize information on effective integrated management approaches for western flower thrips that have developed through research on its biology, behavior, and ecology. We further highlight emerging topics regarding the species status of western flower thrips, as well as its genetics, biology, and ecology that facilitate its use as a model study organism and will guide development of appropriate management practices.


Assuntos
Tisanópteros/fisiologia , Distribuição Animal , Animais , Herbivoria , Controle de Insetos
12.
Sci Rep ; 9(1): 13625, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541161

RESUMO

Behavioral thermoregulation is a defensive strategy employed by some insects to counter infections by parasites and pathogens. Most reported examples of this type of thermoregulatory response involve behavioral fevering. However depending upon the life history of a host-insect and that of the parasite or pathogen, the host may respond by cold-seeking behavior. Thermoregulation is not only ecologically important; it may affect the success of parasites and pathogens as biological control agents. We examined if Frankliniella occidentalis (Pergande) thermoregulates in response to infection by Beauveria bassiana, a fungal pathogen commonly used for biological control. Fungal-infected thrips preferentially moved to cooler areas (~12 °C) while healthy thrips sought out warmer temperatures (~24 °C). This cold-seeking behavior suppressed the growth of B. bassiana in infected thrips, and significantly improved survivorship of infected thrips. At 24 °C, males only survived up to 10 d after infection and females up to 20 d after infection, which was substantially poorer survivorship than that of corresponding healthy individuals. However, individuals of both sexes survived up to 48 d after infection at 12 °C, which was a much less severe reduction in survivorship compared with the effect of B. bassiana infection at 24 °C. The proportion of females among progeny from infected thrips at 12 °C was higher than at 24 °C. Therefore, cold-seeking behavior is beneficial to F. occidentalis when infected by B. bassiana, and its effects should be considered in the use of B. bassiana in biological control programs.


Assuntos
Beauveria/patogenicidade , Regulação da Temperatura Corporal/fisiologia , Tisanópteros/fisiologia , Animais , Beauveria/fisiologia , Feminino , Infecções , Insetos/crescimento & desenvolvimento , Masculino , Controle Biológico de Vetores , Reprodução , Sobrevida , Sobrevivência , Temperatura , Tisanópteros/metabolismo
13.
Insects ; 10(2)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791617

RESUMO

Western flower thrips (WFT) is one of the most important pests of horticultural crops worldwide because it can damage many different crops and transmit various plant viruses. Given these significant impacts on plant production, novel methodologies are required to maximize regulation of WFT to minimize crop losses. One particular approach is to develop control strategies for the non-feeding, soil-dwelling stages of WFT. Control of these stages could be enhanced through the use of granules impregnated with entomopathogenic fungi mixed in the soil. The use of soil-applied fungi contrasts with existing approaches in which entomopathogenic fungi are formulated as oil-based suspensions or water-based wettable powders for foliar applications against the feeding stages of WFT. To examine the efficacy of this approach, we evaluated the effects of a granular formulation of Beauveria bassiana on the soil-dwelling, pupal phases of Frankliniella occidentalis in laboratory bioassays and greenhouse experiments. Based on micromorphological observations of fungal conidia during the infection process after treatment of WFT with a B. bassiana suspension, fungal conidia complete the process of surface attachment, germination, and penetration of the body wall of the WFT pupa and enter the host within 60 h of treatment. Given these results, we undertook a controlled greenhouse experiment and applied B. bassiana granules to soil used to cultivate eggplants. Populations of F. occidentalis on eggplants grown in treated soil were 70% lower than those on plants grown in the untreated soil after 8 weeks. Furthermore, when measuring the survival and growth of B. bassiana on granules under different soil moisture conditions, survival was greatest when the soil moisture content was kept at 20%. These results indicate that the application of B. bassiana-impregnated granules could prove to be an effective biological control strategy for use against F. occidentalis under greenhouse conditions.

14.
J Econ Entomol ; 112(2): 571-576, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30689934

RESUMO

Laboratory studies were conducted to determine the effect of two prey species, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Aphalaridae) and Aphis gossypii Glover (Hemiptera: Aphididae) on the biology, reproduction, and food consumption indices of Coccinella septempunctata L. (Coleoptera: Coccinellidae). Both species of prey were readily consumed by C. septempunctata larvae and adults. The predator was able to successfully utilize the psylla prey for larval development, but failed to lay eggs when fed this prey. However, A. gossypii fully supported both development and reproduction of C. septempunctata. Dry mass of ingested food was similar on both diets for each larval instar. However, the dry mass gained during each stadium for C. septempunctata was significantly greater with A. gossypii prey. The aphid diet was superior to the psylla diet in terms of food conversion efficiency as larvae consumed aphids more efficiently than psyllas, regardless of the higher consumption index on the psylla prey. Our results confirm that the study of prey suitability for larvae and adult stages of predatory lady beetles should be studied separately.


Assuntos
Afídeos , Besouros , Animais , Larva , Comportamento Predatório , Reprodução
15.
J Food Prot ; 81(3): 369-376, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29411999

RESUMO

The Produce Safety Rule of the U.S. Food Safety Modernization Act includes restrictions on the use of agricultural water of poor microbiological quality. Mitigation options for poor water quality include the application of an irrigation-to-harvest interval of <4 days; however, dry bulb onion production includes an extended irrigation-to-harvest interval (<30 days). This study evaluated conventional curing practices for mitigating Escherichia coli contamination in a field setting. Well water inoculated with rifampin-resistant E. coli (1, 2, or 3 log CFU/mL) was applied to onion fields (randomized block design; n = 5) via drip tape on the final day of irrigation. Onions remained undisturbed for 7 days and were then lifted to the surface to cure for an additional 21 days before harvest. Water, onions, and soil were tested for presence of rifampin-resistant E. coli. One day after irrigation, 13.3% of onions (20 of 150) receiving the poorest quality water (3 log CFU/mL) tested positive for E. coli; this prevalence was reduced to 4% (6 of 150 onions) after 7 days. Regardless of inoculum level, E. coli was not detected on any onions beyond 15 days postirrigation. These results support conventional dry bulb onion curing practices as an effective strategy to mitigate microbiological concerns associated with poor quality irrigation water.


Assuntos
Irrigação Agrícola , Cebolas/microbiologia , Água , Microbiologia da Água
16.
Pest Manag Sci ; 73(9): 1775-1779, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28422455

RESUMO

Liriomyza trifolii (Burgess) is a highly invasive species that has become established in agricultural and ornamental crops throughout the world. L. trifolii was first recorded in China in 2005 in Guangdong Province. Subsequently, its known distribution in China has rapidly expanded to another 11 provinces (Zhejiang, Jiangsu, Shanghai, Fujian, Guangxi, Shandong, Hainan, Hebei, Henan, Hubei and Anhui), where it is currently causing considerable damage and economic losses. Experimental research and field surveys have contributed to our understanding of the ecology of L. trifolii and particularly the process of invasion and its interactions with other established, exotic Liriomyza leafminer species. A number of factors have contributed to the successful establishment of L. trifolii and displacement of interspecific competitors. In China, L. trifolii has become a particularly devastating pest in areas with intensive farming with extensive monocultures and a reliance on insecticide use. Integrated pest management incorporating judicious applications of insecticide combined with biological and cultural controls is likely to provide the best long-term management strategy for L. trifolii. We provide information regarding 10 years of L. trifolii invasion in China and discuss areas of future research to enhance our overall understanding of the biology and ecology of L. trifolii and to improve management programmes for this widespread invasive insect pest. © 2017 Society of Chemical Industry.


Assuntos
Dípteros , Controle de Insetos/métodos , Espécies Introduzidas , Animais , China
17.
Sci Rep ; 7: 40512, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084404

RESUMO

Competitive interactions between species can be mitigated or even reversed in the presence of anthropogenic influences. The thrips species Frankliniella occidentalis and Thrips tabaci are highly invasive and damaging agricultural pests throughout the world. Where the species co-occur, one species tends to eventually predominate over the other. Avermectin and beta-cypermethrin are commonly used insecticides to manage thrips in China, and laboratory bioassays demonstrated that F. occidentalis is significantly less susceptible than T. tabaci to these insecticides. In laboratory cage trials in which both species were exposed to insecticide treated cabbage plants, F. occidentalis became the predominant species. In contrast, T. tabaci completely displaced F. occidentalis on plants that were not treated with insecticides. In field trials, the species co-existed on cabbage before insecticide treatments began, but with T. tabaci being the predominant species. Following application of avermectin or beta-cypermethrin, F. occidentalis became the predominant species, while in plots not treated with insecticides, T. tabaci remained the predominant species. These results indicate that T. tabaci is an intrinsically superior competitor to F. occidentalis, but its competitive advantage can be counteracted through differential susceptibilities of the species to insecticides. These results further demonstrate the importance of external factors, such as insecticide applications, in mediating the outcome of interspecific interactions and produce rapid unanticipated shifts in the demographics of pest complexes.


Assuntos
Comportamento Competitivo/efeitos dos fármacos , Espécies Introduzidas , Praguicidas/toxicidade , Tisanópteros/fisiologia , Animais , Bioensaio , Feminino , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Folhas de Planta/efeitos dos fármacos , Piretrinas/toxicidade , Especificidade da Espécie
18.
Annu Rev Entomol ; 62: 165-183, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-27860525

RESUMO

The displacement of a species from a habitat by actions of another is the most severe outcome of interspecific interactions. This review focuses on recent developments in the understanding of (a) ecological mechanisms that lead to displacements, (b) how outcomes of interspecific interactions are affected by the context of where and when they occur, and (c) impacts of displacements. Displacements are likely to escalate as their primary initiating factors-the spread of non-native species and environmental change-continue at unprecedented rates. Displacements typically result from interactions of multiple mechanisms, not all of which involve direct competition. Various biotic and abiotic factors mediate these mechanisms, so variable outcomes occur when the same species interact in different environments. Though replacement of one species by another has particular relevance to pest management and conservation biology, the cascading effects that displacements have in managed and natural systems are critical to understand.


Assuntos
Distribuição Animal , Aracnídeos/fisiologia , Insetos/fisiologia , Animais , Ecossistema , Espécies Introduzidas
19.
Pest Manag Sci ; 72(7): 1440-4, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26617067

RESUMO

BACKGROUND: To understand the current status of insecticide resistance of the invasive western flower thrips, Frankliniella occidentalis, in China, the responses of six field populations to six commonly used insecticides, i.e. spinosad, spinetoram, cyantraniliprole, imidacloprid, acetamiprid and pyriproxyfen, were evaluated in comparison with a susceptible laboratory strain. RESULTS: Field populations tended to be less susceptible than the laboratory strain. The population from Shouguang, Shandong Province, showed the lowest levels of susceptibility. A 15.64-fold and 17.29-fold resistance to spinosad and spinetoram was detected in the Shouguang population. A 11.74-fold and 13.64-fold resistance to cyantraniliprole was detected in populations from Daxing in the Beijing area and Shouguang. All populations showed a low level of resistance to imidacloprid, acetamiprid and pyriproxyfen, except for the Shouguang population, which was 127.58-fold more resistant to pyriproxyfen. CONCLUSION: Variations in resistance to the tested insecticides were observed among the sampled population. Spinosad and spinetoram were the most efficient insecticides and are recommended for use in an integrated management programme. Resistance management strategies should be implemented to reduce the potential for resistance evolving. © 2015 Society of Chemical Industry.


Assuntos
Resistência a Inseticidas , Tisanópteros , Animais , China , Combinação de Medicamentos , Feminino , Imidazóis , Inseticidas , Macrolídeos , Neonicotinoides , Nitrocompostos , Pirazóis , Piridinas , ortoaminobenzoatos
20.
J Econ Entomol ; 108(3): 975-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26470219

RESUMO

We assessed effects of parental exposure to Beauveria bassiana on life history traits of subsequent generations of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Progeny from individuals that survived fungal exposure as second instars had significantly shorter egg stages, but longer prepupal development times than corresponding untreated controls. However, survivorship to adulthood of these progeny groups did not differ. Although fecundities of the parental types did not differ, the sex ratio of progeny from fungal-treated parents was male-biased, whereas sex ratio of progeny from untreated control parents was even. We calculated life table parameters for the progeny and found that all parameters, except for generation time, were significantly less for the progeny of fungal-treated parents than for progeny of untreated parents. The intrinsic rate of increase, finite rate of increase, net reproductive rate, mean generation time, and gross reproductive rate were 0.199 d(-1), 1.229 d(-1), 21.84, 15.48 d, and 27.273, respectively, for progeny of treated thrips, and 0.266 d(-1), 1.316 d(-1), 52.540, 14.92 d, and 70.64, respectively, for progeny of control thrips. Consequently, population projections demonstrated that offspring of parents exposed to B. bassiana would increase their population more slowly than those from untreated parents. These results demonstrate that B. bassiana has sublethal effects that reduce the reproductive success of F. occidentalis and these effects should be taken into account when evaluating its use in management programs for F. occidentalis.


Assuntos
Beauveria/fisiologia , Controle Biológico de Vetores , Tisanópteros/parasitologia , Animais , Feminino , Fertilidade , Longevidade , Masculino , Crescimento Demográfico , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA