Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(4): 1938-1947, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269604

RESUMO

This study evaluates the functional characteristics of the exopolysaccharide (EPS) extracts produced by various strains of Lactiplantibacillus pentosus (LPG1, 119, 13B4, and Lp13) and Lactiplantibacillus plantarum (Lp15) isolated from table olives. None of the EPS crude extracts showed cytotoxicity when administered to THP-1 human macrophage cells at dosages ranging from 6.25 to 50 µg mL-1. Many exhibited anti-inflammatory properties (reduction of pro-inflammatory cytokines TNF-α and IL-6 production) and antioxidant activity (reduction of ROS%) when macrophages were stimulated with Escherichia coli lipopolysaccharide. Notably, the EPS extract produced by the L. pentosus LPG1 strain had the best results corroborated by western blot immune analysis for differential expression of COX-2, Nrf-2, and HO-1 proteins, with the most significant antioxidant and anti-inflammatory response observed at a dosage of 50 µg mL-1. Chemical analysis revealed that the EPS extract produced by this strain contains a heteropolymer composed of mannose (35.45%), glucose (32.99%), arabinose (17.93%), xylose (7.48%), galactose (4.03%), rhamnose (1.34%), and fucose (0.77%). Finally, we conducted response surface methodology to model the EPS extract production by L. pentosus LPG1 considering pH (3.48-8.52), temperature (16.59-33.41 °C) and salt concentration (0.03-8.77% NaCl) as independent variables. The model identified linear effects of salt and pH and quadratic effects of salt as significant terms. The maximum EPS extract production (566 mg L-1) in a synthetic culture medium (MRS) was achieved at pH 7.5, salt 7.0%, and a temperature of 20 °C. These findings suggest the potential for novel applications for the EPS produced by L. pentosus LPG1 as nutraceutical candidates for use in human diets.


Assuntos
Olea , Polissacarídeos Bacterianos , Humanos , Polissacarídeos Bacterianos/química , Suplementos Nutricionais , Meios de Cultura , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios
2.
Sensors (Basel) ; 23(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37960646

RESUMO

Biomedical Microelectromechanical Systems (BioMEMS) serve as a crucial catalyst in enhancing IoT communication security and safeguarding smart healthcare systems. Situated at the nexus of advanced technology and healthcare, BioMEMS are instrumental in pioneering personalized diagnostics, monitoring, and therapeutic applications. Nonetheless, this integration brings forth a complex array of security and privacy challenges intrinsic to IoT communications within smart healthcare ecosystems, demanding comprehensive scrutiny. In this manuscript, we embark on an extensive analysis of the intricate security terrain associated with IoT communications in the realm of BioMEMS, addressing a spectrum of vulnerabilities that spans cyber threats, data manipulation, and interception of communications. The integration of real-world case studies serves to illuminate the direct repercussions of security breaches within smart healthcare systems, highlighting the imperative to safeguard both patient safety and the integrity of medical data. We delve into a suite of security solutions, encompassing rigorous authentication processes, data encryption, designs resistant to attacks, and continuous monitoring mechanisms, all tailored to fortify BioMEMS in the face of ever-evolving threats within smart healthcare environments. Furthermore, the paper underscores the vital role of ethical and regulatory considerations, emphasizing the need to uphold patient autonomy, ensure the confidentiality of data, and maintain equitable access to healthcare in the context of IoT communication security. Looking forward, we explore the impending landscape of BioMEMS security as it intertwines with emerging technologies such as AI-driven diagnostics, quantum computing, and genomic integration, anticipating potential challenges and strategizing for the future. In doing so, this paper highlights the paramount importance of adopting an integrated approach that seamlessly blends technological innovation, ethical foresight, and collaborative ingenuity, thereby steering BioMEMS towards a secure and resilient future within smart healthcare systems, in the ambit of IoT communication security and protection.


Assuntos
Sistemas Microeletromecânicos , Privacidade , Humanos , Metodologias Computacionais , Ecossistema , Teoria Quântica , Comunicação , Atenção à Saúde , Segurança Computacional
3.
J Food Sci ; 88(12): 5191-5202, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872810

RESUMO

Different varieties of table olives have suitable morphological characteristics that allow them to be processed as Spanish-style green table olives. However, the Campiñesa cultivar presents difficulties when submitted to a lactic fermentation, in spite of being inoculated with dedicated starter cultures such as OleicaStarter. The strategy followed in this study to facilitate the start of lactic fermentation was to reinforce the OleicaStarter culture with the use of the Lactoplantibacillus pentosus Lp309 a strain that enhanced the survival of lactic acid bacteria (LAB) at the beginning of fermentation, reaching final pH values (4.08 ± 0.01), free acidity (1.00 ± 0.01 g/100 mL of brine), LAB population (6.17 ± 0.09 log CFU/mL), nutrient depletion (0.80 ± 0.09 g/kg of pulp), and lactic acid production (11.85 ± 0.72 g/L). These values allowed stabilization of the final product, thus complying with the quality and food safety standards established by the Codex Alimentarius for table olives.


Assuntos
Lactobacillus pentosus , Olea , Lactobacillus , Olea/microbiologia , Fermentação , Concentração de Íons de Hidrogênio , Microbiologia de Alimentos
4.
Front Med (Lausanne) ; 10: 1212949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601794

RESUMO

The lack of specific regulatory guidelines for nanotechnology-enabled health products (NHPs) is hampering development and patient access to these innovative technologies. Namely, there is an urgent need for harmonized regulatory definitions and classification systems that allow establishing a standardized framework for NHPs regulatory assessment. In this work, a novel classification system for NHPs is proposed. This classification can be applied for sorting nano-based innovations and regulatory guidelines according to the type of NHPs they address. Said methodology combines scientific and regulatory principles and it is based on the following criteria: principal mode of action, chemical composition, medical purpose and nanomanufacturing approach. This classification system could serve as a useful tool to sensor the state of the art of NHPs which is particularly useful for regulators to support strategy development of regulatory guidelines. Additionally, this tool would also allow manufacturers of NHPs to align their development plans with their applicable guidelines and standards and thus fulfill regulators expectations.

5.
Heliyon ; 9(12): e22608, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38213578

RESUMO

The utilization of grape juice from low oenological value grape varieties for bioethanol production represent an alternative for diversification and value addition in viticulture. Optimizing Very High Gravity (VHG) fermentation can significantly increase ethanol productivity while reducing water and energy consumption. In this study, the impact of different nitrogen sources on growth and fermentative performance of locally selected yeast strains was investigated. Five yeast strains of species Saccharomyces cerevisiae and Zygosaccharomyces rouxii were cultured in both synthetic culture media and natural grape juice supplemented with ammonium sulfate (NH), yeast extract (YE), Fermaid K (FERM), and urea (U) at varying concentrations. Due to the very low fermentation rate, the Z. rouxii strain was excluded from the selection. The results obtained in synthetic medium showed that nitrogen sources that promoted growth (NH and YE) had minimal effects on fermentative performance and were highly dependent on the specific yeast strain. However, the combination of urea and ammonium favored the rate of sugar consumption. When validated in natural grape juice, urea combined with ammonium (U + NH 300 + 75 mg/L) improved both growth parameters and ethanol yield. Doubling the concentration (U + NH 600 + 150 mg/L) further enhanced sugar consumption and ethanol production while reducing unwanted by-products. The combined use of urea and ammonium exhibited a synergistic effect, making it a cost-effective nitrogen supplement for VHG fermentations.

6.
Front Med (Lausanne) ; 10: 1308047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298514

RESUMO

Strategic regulatory development is essential to ensure that new innovations in nanotechnology-enabled health products (NHPs) successfully reach the market and benefit patients. Currently, the lack of specific regulatory guidelines for NHPs is considered one of the primary causes of the so-called "valley of death" in these products, impacting both current and future advancements. In this study, we have implemented a methodology to anticipate key trends in NHP development and compare them with the current regulatory landscape applicable to NHPs. This methodology relies on Horizon Scanning, a tool commonly used by policymakers to foresee future needs and proactively shape a regulatory framework tailored to those needs. Through the application of this methodology, different trends in NHP have been identified, notably NHPs for drug delivery and dental applications. Furthermore, the most disruptive elements involve NHPs that are multicomposite and multifunctional, harnessing nano-scale properties to combine therapeutic and diagnostic purposes within a single product. When compared with the regulatory landscape, current regulations are gradually adapting to accommodate emerging trends, with specific guidelines being developed. However, for the most disruptive elements, multicomposite and multifunctional NHPs, their novelty still poses significant regulatory challenges, requiring a strategic development of guidelines by regulatory agencies to ensure their safe and effective integration into healthcare practices. This study underscores the importance of proactive regulatory planning to bridge the gap between NHP innovation and market implementation.

7.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328550

RESUMO

The corrosion inhibition of 5-O-ß-D-glucopyranosyl-7-methoxy-3',4'-dihydroxy-4-phenylcoumarin (4-PC) in AISI 1018 steel immersed in 3% NaCl + CO2 was studied by electrochemical impedance spectroscopy (EIS). The results showed that, at just 10 ppm, 4-PC exerted protection against corrosion with Õ² = 90% and 97% at 100 rpm. At static conditions, the polarization curves indicated that, at 5 ppm, the inhibitor presented anodic behavior, while at 10 and 50 ppm, there was a cathodic-type inhibitor. The inhibitor adsorption was demonstrated to be chemisorption, according to the Langmuir isotherm for 100 and 500 rpm. By means of SEM-EDS, the corrosion inhibition was demonstrated, as well as the fact that the organic compound was effective for up to 72 h of immersion. At static conditions, dispersion-corrected density functional theory results reveal that the chemical bonds established by the phenyl group of 4-PC are responsible of the chemisorption on the steel surface. According with Fukui reactivity indices, the molecules adsorbed on the metal surface provide a protective cover against nucleophilic and electrophilic attacks, pointing to the corrosion inhibition properties of 4-PC.


Assuntos
Cloreto de Sódio , Aço , Dióxido de Carbono , Corrosão , Cumarínicos , Glucosídeos , Modelos Teóricos , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia , Aço/química
8.
Int J Food Microbiol ; 359: 109415, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34607034

RESUMO

This work applies metataxonomic, standard statistics, and compositional data (CoDa) techniques to study the bacterial diversity of spoiled and normal Spanish-style table olive fermentations, analysing a total of 10-tons of industrial fermentation containers from two processing yards. Forty percent were affected by butyric, sulfidic, or putrid spoilage, while 60% followed the ordinary fermentation course. The samples were obtained at 30 days of fermentation, determining their 16S rRNA gene Amplicon Sequence Variant compositions (ASVs). The butyric containers showed a bacterial profile strongly associated with the genera Enterococcus, Leuconostoc, and Atlantibacter, but also with Lactiplantibacillus and Melissococcus, and less confident to Raoultella, Enterobacter, Serratia, and Celerinatantimonas. The sulfidic fermentation was linked to Alkalibacterium and, to a lesser extent, Marinilactibacillus and the absence of Lactiplantibacillus. Putrid spoilage was mainly related to Halolactibacillus and Alkalibacterium. Sulfidic/putrid (together) differed from butyric spoilage by the presence of Alkalibacterium/Marinilactibacillus as well as by Halomonas/Halanaerobium. Lactiplantibacillus dominated normal fermentations, but Vibrio was also frequently found (0-46%), apparently not causing any alteration. These results contribute to a better microbial characterisation of non-zapatera spoiled table olive fermentations. They also suggest using several statistical techniques to discriminate normal vs spoiled fermentations adequately.


Assuntos
Olea , Bactérias/genética , Fermentação , Microbiologia de Alimentos , RNA Ribossômico 16S/genética
11.
Front Microbiol ; 12: 650754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149640

RESUMO

The presence of Vibrio species in table olive fermentations has been confirmed by molecular biology techniques in recent studies. However, there has been no report of any foodborne outbreak caused by Vibrio due to the consumption of table olives, and their role as well as the environmental conditions allowing their survival in table olives has not been elucidated so far. The aims of this work were to model the behavior of an inoculated Vibrio cocktail in diverse table olive environments and study the possible behavior of an inoculated Vibrio cocktail in table olives. First, an in vitro study has been performed where the microbial behavior of a Vibrio cocktail was evaluated in a laboratory medium and in olive brines using predictive models at different NaCl concentrations (2-12%) and pH levels (4.0-9.0). Afterward, a challenge testing was done in lye-treated olives inoculated at the beginning of fermentation with the Vibrio cocktail for 22 days. The Vibrio cocktail inoculated in table olives has not been detected in olive brines during fermentation at different pH levels. However, it was observed that this microorganism in a laboratory medium could reach an optimal growth at pH 9 and 2% salt, without time of constant absorbance (t A), and the maximum absorbance value (y end) observed was at pH 8 and 2% salt conditions. The statistical analysis demonstrated that the effect of salt concentration was higher than pH for the kinetic growth parameters (µmax, t A, and y end). On the other hand, it was confirmed that no growth of the Vibrio cocktail on any sample was noticed in lye-treated olive fermentations. Thus, it was concluded that the presence of olive compounds (unknown) did not allow the development of Vibrio strains, so it is a very safety product as it has a natural antimicrobial compound, but the possibility that a native Vibrio sp. is able to acquire the capacity to adapt to this compound should be considered in further studies.

12.
Foods ; 10(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073901

RESUMO

Table olives can suffer different types of spoilage during fermentation. In this work, a multi-statistical approach (standard and compositional data analysis) was used for the study of the volatile organic compounds (VOCs) associated with altered (butyric, sulfidic, and putrid) and non-altered (normal) Manzanilla Spanish-style table olive fermentations. Samples were collected from two industrial fermentation yards in Seville (Spain) in the 2019/2020 season. The VOC profiles of altered (n = 4) and non-altered (n = 6) samples were obtained by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Ninety-one VOCs were identified and grouped into alcohols (30), esters (21), carbonyl compounds (12), acids (10), terpenes (6), phenols (6), sulfur compounds (2), and others (4). The association of the VOCs with spoilage samples depended on the standard or compositional statistical methodology used. However, butyric spoilage was strongly linked by several techniques to methyl butanoate, ethyl butanoate, and butanoic acid; sulfidic spoilage with 2-propyl-1-pentanol, dimethyl sulfide, methanol, 2-methylbutanal, 2-methyl-2-butenal, ethanol, 2-methyl-3-buten-2-ol, and isopentanol, while putrid was mainly related to D-limonene and 2-pentanol. Our data contribute to a better characterisation of non-zapatera spoiled table olive fermentations and show the convenience of using diverse statistical techniques for a most robust selection of spoilage VOC markers.

13.
Microorganisms ; 9(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803149

RESUMO

Aloreña de Málaga is a table olive especially characterised by its natural freshness and short shelf-life. In this work, we applied a metataxonomic approach to unravel the microbial diversity of bacterial and fungi populations through the shelf-life of traditionally packed Aloreña de Málaga. A significant increase in lactic acid bacteria and mesophilic aerobic populations was observed during shelf-life, reaching the maximum population levels (4-5 log10 CFU) at the end of the study (260 days). On the contrary, a rapid reduction in yeast and mould populations was reported. The use of a metataxonomic analysis based on the amplification of 16S (bacteria) and internal transcribed spacer (ITS) region (fungi) regions revealed a low diversity for both microbial groups. Lactiplantibacillus (65.05 ± 8.65% in brine vs. 58.70 ± 15.70% in fruit), Pediococcus (28.17 ± 7.36% in brine vs. 27.20 ± 15.95% in fruit), and Celerinatantimonas (4.64 ± 1.08% in brine vs. 11.82 ± 18.17% in fruit) were the main genera found among bacteria, and an increase in Lactiplantibacillus and a reduction in Celerinatantimonas populations during the shelf-life were observed. On the other hand, Citeromyces was the dominant fungi genus (54.11 ± 2.00% in brine vs. 50.91 ± 16.14% in fruit), followed by Candida (8.80 ± 2.57% in brine vs. 12.32 ± 8.61% in fruit) and Penicillium (6.48 ± 1.87% vs. 8.48 ± 4.43% in fruit). No food-borne pathogen genera were detected in any of the samples analysed, indicating the high level of food safety found in this ready-to-eat fermented vegetable. Data obtained in this work will help in the design of new strategies for the control of microbial populations during the shelf-life of Aloreña de Málaga.

15.
Food Microbiol ; 94: 103659, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279084

RESUMO

This work relates native lactic acid bacteria (LAB) (Lactobacillus pentosus LPG1, L. pentosus Lp13, and Lactobacillus plantarum Lpl15) and yeast (Wickerhamomyces anomalus Y12) starters to the volatile components (VOCs) produced in green Spanish-style table olives. For this aim, the VOC profile was considered as compositional data (CoDa). The CoDa analysis generated new information on the relationship among inocula and VOCs through the tetrahedral plot, CoDa-biplot, variation array matrix, and CoDa dendrogram. The ilr (which includes pivot) coordinates (Euclidean space) from VOCs produced more reliable starters' clustering than the original data. The potential VOC markers, identified by a test based on the pairwise comparison of the logratio variation arrays from the whole data set and the individual groups, were (starters in the parenthesis): 2-phenylethyl acetate (LPG1, Y12, Y12 + LAB), methanol (Lpl15), cis-2-penten-1-ol (LPG1, Y12, Y12 + LAB), 2-methyl-3-hexanol (LPG1, Y12), U (non-identified) C (m/z 83-112-97) (Y12) and UF (m/z 95-154-110) (LPG1, Y12 + LAB). Besides, some VOCs were partial/totally inhibited by specific starters: 2-methyl-1-propanol (Lp13, Y12 + LAB), 2-phenyl ethanol (Lp13), furfuryl methyl ether (Y12 + LAB), purpurocatechol (Y12, Y12 + LAB), 4-ethyl guaiacol (Lp13, Lpl15), 4-ethyl phenol (Lpl15), 5-tert-butylpyrogallol (Lp13, Lpl15), and UE (m/z 111-198) (Lp13). A better understanding of the relationship between starters and their VOC may facilitate modelling the flavour and quality of Spanish-style green table olive fermentations.


Assuntos
Lactobacillales/metabolismo , Olea/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Leveduras/metabolismo , Análise de Dados , Fermentação , Aromatizantes/metabolismo , Frutas/microbiologia , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Espanha , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
18.
Food Microbiol ; 91: 103497, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539965

RESUMO

In this work, Lactobacillus pentosus LPG1, Lactobacillus pentosus Lp13, Lactobacillus plantarum Lpl15, and Wickerhanomyces anomalous Y12, all of them previously isolated from fermented table olive biofilms, were used (alone or in combination) as multifunctional starters for Manzanilla Spanish-style green table olive fermentations. Their performances were evaluated through the changes in the key physico-chemical and microbiological parameters, correlation between AI-2 production and biofilm formation, inoculum imposition, metataxonomic analysis and sensory characteristics of the finished products. Inoculation only with lactic acid bacteria (LAB) strains led to higher titratable acidities and lower pH values than the spontaneous fermentation (non-inoculated control), mainly during the first steps of processing. However, the sequential inoculation of the yeast and then the combination of the 3 LAB strains showed the most favourable evolution. LPG1 strain and, particularly Lp13, were excellent biofilms former and showed the major imposition on the fruit epidermis, as corroborated by rep-PCR analysis. Production of AI-2 was lower in the treatment inoculated exclusively with yeast Y12 but had the highest presence in the sequential yeast-LAB inoculum, with its maximum concentration and maximum LAB population on fruits (19th days) strongly related. Metataxonomic analysis of the biofilms at the end of the fermentation revealed, in addition to Lactobacillus, high proportions of sequences from genera Marinilactobacillus, Alkalibacterium, Halolactobacillus, and low levels of Halomonas and Aerococcus. Compositional data analysis of the omics data revealed that Lpl15 was scarcely efficient for controlling the spontaneous microbiota since its treatment presented the highest proportions of Aerococcus genus. Finally, the sensory analysis showed similar characteristics for the treatment inoculated with LPG1 and the spontaneous process, with olives inoculated with the yeast (alone or in combination with Lactobacillus strains) showing attractive scores. Then, inoculation of Spanish-style table olive fermentations with a sequential yeast and LAB combination could be an advisable practice.


Assuntos
Alimentos Fermentados/microbiologia , Lactobacillus/metabolismo , Olea/microbiologia , Saccharomycetales/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Técnicas de Cocultura , Fermentação , Alimentos Fermentados/análise , Microbiologia de Alimentos , Frutas/microbiologia , Homosserina/análogos & derivados , Homosserina/análise , Homosserina/biossíntese , Lactobacillus/classificação , Lactobacillus/crescimento & desenvolvimento , Lactonas/análise , Microbiota/genética , Saccharomycetales/crescimento & desenvolvimento
19.
Materials (Basel) ; 12(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581421

RESUMO

The demand for hydrophobic polymer-based protective coatings to impart high corrosion resistance has increased recently. The increase of the hydrophobicity in a hybrid coating is a new challenge, for that reason and in order to protect a metallic surface of oxidant agents, a poly (methyl methacrylate) (PMMA) coating with the addition of a different amount of silicon dioxide (SiO2) was developed. The hybrid coating was applied on a sample of stainless steel AISI 304 by the dip-coating method. The characterization of the coatings was determined by electrochemical impedance spectroscopy and with a scanning electrochemical microscopy. The best coatings were PMMA and PMMA + SiO2 0.01% that exhibits a real impedance in the Nyquist diagram of 760 and 427,800 MΩ⋅cm2, respectively, and the modulus of the real impedance in the Bode diagram present values of 2.2 × 108 and 3.3 × 108 Ω⋅cm2. Moreover, the phase angle presents constant values around 75° to 85° and 85° for the PMMA and PMMA + SiO2 0.01%, respectively. Moreover, the values of the real resistance for the PMMA + SiO2 0.01% coating present values in the order of Mega-ohms despite the coating exhibits an artificial defect in their surface. The contact angle test showed that the hydrophobicity of the hybrid PMMA + SiO2 0.01% coating is higher than that of the pure PMMA coatings. The hybrid PMMA + SiO2 coatings developed in this work are a very interesting and promising area of study in order to develop efficient products to protect metallic surfaces from corrosion phenomenon.

20.
Foods ; 8(8)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344875

RESUMO

In this work, Manzanilla Spanish-style green table olive fermentations were inoculated with Lactobacillus pentosus LPG1, Lactobacillus pentosus Lp13, Lactobacillus plantarum Lpl15, the yeast Wickerhanomyces anomalus Y12 and a mixed culture of all them. After fermentation (65 days), their volatile profiles in brines were determined by gas chromatography-mass spectrometry analysis. A total of 131 volatile compounds were found, but only 71 showed statistical differences between at least, two fermentation processes. The major chemical groups were alcohols (32), ketones (14), aldehydes (nine), and volatile phenols (nine). Results showed that inoculation with Lactobacillus strains, especially L. pentosus Lp13, reduced the formation of volatile compounds. On the contrary, inoculation with W. anomalus Y12 increased their concentrations with respect to the spontaneous process, mainly of 1-butanol, 2-phenylethyl acetate, ethanol, and 2-methyl-1-butanol. Furthermore, biplot and biclustering analyses segregated fermentations inoculated with Lp13 and Y12 from the rest of the processes. The use of sequential lactic acid bacteria and yeasts inocula, or their mixture, in Spanish-style green table olive fermentation could be advisable practice for producing differentiated and high-quality products with improved aromatic profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA