Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 924707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967843

RESUMO

Due to decreased immunity, both antibiotics and antifungals are regularly used in pediatric hematologic-cancer patients as a means to prevent severe infections and febrile neutropenia. The general effect of antibiotics on the human gut microbiome is profound, yielding decreased diversity and changes in community structure. However, the specific effect on pediatric oncology patients is not well-studied. The effect of antifungal use is even less understood, having been studied only in mouse models. Because the composition of the gut microbiome is associated with regulation of hematopoiesis, immune function and gastrointestinal integrity, changes within the patient gut can have implications for the clinical management of hematologic malignancies. The pediatric population is particularly challenging because the composition of the microbiome is age dependent, with some of the most pronounced changes occurring in the first three years of life. We investigated how antibiotic and antifungal use shapes the taxonomic composition of the stool microbiome in pediatric patients with leukemia and lymphoma, as inferred from both 16S rRNA and metagenome data. Associations with age, antibiotic use and antifungal use were investigated using multiple analysis methods. In addition, multivariable differential abundance was used to identify and assess specific taxa that were associated with multiple variables. Both antibiotics and antifungals were linked to a general decline in diversity in stool samples, which included a decrease in relative abundance in butyrate producers that play a critical role in host gut physiology (e.g., Faecalibacterium, Anaerostipes, Dorea, Blautia),. Furthermore, antifungal use was associated with a significant increase in relative abundance of opportunistic pathogens. Collectively, these findings have important implications for the treatment of leukemia and lymphoma patients. Butyrate is important for gastrointestinal integrity; it inhibits inflammation, reinforces colonic defense, mucosal immunity. and decreases oxidative stress. The routine use of broad-spectrum anti-infectives in pediatric oncology patients could simultaneously contribute to a decline in gastrointestinal integrity and colonic defense while promoting increases in opportunistic pathogens within the patient gut. Because the gut microbiome has been linked to both short-term clinical outcomes, and longer-lasting health effects, systematic characterization of the gut microbiome in pediatric patients during, and beyond, treatment is warranted.


Assuntos
Leucemia , Linfoma , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Bactérias , Butiratos , Criança , Pré-Escolar , Humanos , Leucemia/complicações , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Camundongos , RNA Ribossômico 16S/genética
2.
Am J Pathol ; 189(7): 1435-1450, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30980800

RESUMO

Pathologic inflammation in response to injury, infection, or oxidative stress is a proposed mechanism relating cognitive decline to dementia. The kynurenine pathway and thioredoxin-interacting protein (TXNIP) activity regulate inflammation and neurotoxicity in Alzheimer disease (AD). We examined cognitive deficits, kynurenine pathway mediators, TXNIP, and oxidative damage in the cerebrum and spleen, including inflammatory cytokine production by stimulated splenocytes, from female triple transgenic (3xTg-AD) mice in early and late stages of disease progression, and characterized tissue-specific epigenetic regulation of Txnip gene expression. We show that cognitive deficits in 7-month-old 3xTg-AD mice are associated with a stable increase in cerebrum and spleen tryptophan metabolites, with a concomitant increase in amyloid ß 40 (Aß40)/Aß42 and tau/hyperphosphorylated tau pathologies and a coordinated reduction in spleen proinflammatory cytokine production in 17-month-old mice. The enhanced cerebrum TXNIP expression is associated with increased histone acetylation, transcription factor [Aß42 or CCCTC-binding factor (CTCF)] binding, and Txnip promoter hypomethylation, whereas the attenuated spleen TXNIP expression is associated with increased histone methylation, reduced CTCF binding, and Txnip promoter hypermethylation. These results suggest a causal relationship among epigenomic state, TXNIP expression, cerebral-spleen tryptophan metabolism, inflammatory cytokine production, and cognitive decline; and they provide a potential mechanism for Txnip gene regulation in normal and pathologic conditions, suggesting TXNIP levels may be a useful predictive or diagnostic biomarker for Aß40/Aß42 targeted AD therapies.


Assuntos
Doença de Alzheimer , Cérebro , Disfunção Cognitiva , Estresse Oxidativo , Baço , Triptofano , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cérebro/metabolismo , Cérebro/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Baço/metabolismo , Baço/patologia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Triptofano/genética , Triptofano/metabolismo
3.
Mol Oncol ; 12(11): 1895-1916, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30009399

RESUMO

Pancreatic cancer is arguably the deadliest cancer type. The efficacy of current therapies is often hindered by the inability to predict patient outcome. As such, the development of tools for early detection and risk prediction is key for improving outcome and quality of life. Here, we introduce the plasminogen receptor S100A10 as a novel predictive biomarker and a driver of pancreatic tumor growth and invasion. We demonstrated that S100A10 mRNA and protein are overexpressed in human pancreatic tumors compared to normal ducts and nonductal stroma. S100A10 mRNA and methylation status were predictive of overall survival and recurrence-free survival across multiple patient cohorts. S100A10 expression was driven by promoter methylation and the oncogene KRAS. S100A10 knockdown reduced surface plasminogen activation, invasiveness, and in vivo growth of pancreatic cancer cell lines. These findings delineate the clinical and functional contribution of S100A10 as a biomarker in pancreatic cancer.


Assuntos
Anexina A2/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas , Proteínas S100/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA