Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Dent ; 17: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36042806

RESUMO

Objectives: Implant-supported restorations are generally used for the replacement of the lost teeth. Stability against masticatory forces and proper retention are critical for optimal durability of restorations. The aim of this experimental study was to compare the retention of cobalt-chromium (Co-Cr) copings made by different techniques. Materials and Methods: Twenty-four solid abutment analogs were mounted and scanned with a desktop scanner. They were divided into two groups (n=12) and received metal copings fabricated by either soft or hard Co-Cr alloy. Soft Ceramill Sintron Co-Cr patterns were milled and sintered. Hard Co-Cr blocks were milled in a milling machine. The copings were sandblasted, polished, adjusted, and placed on the respective abutments. The frequency of adjustments was recorded for each abutment. The copings were cemented with zinc phosphate cement and underwent tensile test by a universal testing machine. The Mann-Whitney test and t-test were used to compare the two groups (α=0.05). Results: There was no significant difference in retention of copings between the experimental groups. The mean retentive force was 559.58±115.66 N and 557.13 ±130.48 N for the soft and hard metal groups, respectively (P=0.96). Considering the non-normal distribution of adjustment frequency data, the Mann-Whitney test showed that the frequency of adjustments was significantly higher in the hard metal group than the soft metal group (9.5 versus 0.1667; P<0.001). Conclusion: Although hard metal copings required more adjustments, retention of soft and hard Co-Cr copings was not significantly different.

2.
Eur J Dent ; 12(1): 71-76, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29657528

RESUMO

OBJECTIVE: The aim of this experimental study was to compare retention of frameworks cast from wax patterns fabricated by three different methods. MATERIALS AND METHODS: Thirty-six implant analogs connected to one-piece abutments were divided randomly into three groups according to the wax pattern fabrication method (n = 12). Computer-aided design/computer-aided manufacturing (CAD/CAM) milling machine, three-dimensional printer, and conventional technique were used for fabrication of waxing patterns. All laboratory procedures were performed by an expert-reliable technician to eliminate intra-operator bias. The wax patterns were cast, finished, and seated on related abutment analogs. The number of adjustment times was recorded and analyzed by Kruskal-Wallis test. Frameworks were cemented on the corresponding analogs with zinc phosphate cement and tensile resistance test was used to measure retention value. STATISTICAL ANALYSIS USED: One-way analysis of variance (ANOVA) and post hoc Tukey tests were used for statistical analysis. Level of significance was set at P < 0.05. RESULTS: The mean retentive values of 680.36 ± 21.93 N, 440.48 ± 85.98 N, and 407.23 ± 67.48 N were recorded for CAD/CAM, rapid prototyping, and conventional group, respectively. One-way ANOVA test revealed significant differences among the three groups (P < 0.001). The post hoc Tukey test showed significantly higher retention for CAD/CAM group (P < 0.001), while there was no significant difference between the two other groups (P = 0.54). CAD/CAM group required significantly more adjustments (P < 0.001). CONCLUSIONS: CAD/CAM-fabricated wax patterns showed significantly higher retention for implant-supported cement-retained frameworks; this could be a valuable help when there are limitations in the retention of single-unit implant restorations.

3.
J Contemp Dent Pract ; 18(6): 443-447, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28621271

RESUMO

AIM: Surface treatment is necessarily required for bonding of zirconia to the veneering porcelain and luting cements. Sandblasting is the most common and probably the most efficient surface treatment method. Sandblasting roughens the surface and may affect the flexural strength of zirconia. Different sandblasting protocols may yield variable results. This study sought to assess the effect of sandblasting angle and distance on the biaxial flexural strength of zirconia-based ceramics. MATERIALS AND METHODS: This in vitro experimental study was conducted on 50 zirconia discs measuring 1.2 ± 0.2 mm in thickness and 15 ± 0.2 mm in diameter, which were randomly divided into five groups (n = 10) of one control and four experimental groups subjected to sandblasting with 110 µm aluminum oxide particles under 2 bar pressure for 10 seconds at 15 and 25 mm distances and 45 and 90° angles (between the nozzle head and zirconia surface). Surface roughness was measured by a roughness tester and samples were subjected to thermocycling followed by biaxial flexural strength testing according to ISO6872. The data were analyzed using one-way analysis of variance (p < 0.05). RESULTS: No statistically significant difference was noted in the mean biaxial flexural strength of the five groups (p = 0.40). Different sandblasting protocols yielded significantly different surface roughness values (p < 0.001). The highest and the lowest mean surface roughness belonged to 15 mm/90° (0.51 µm) and control (0.001 µm) groups respectively. CONCLUSION: Change in sandblasting angle and distance had no significant effect on the biaxial flexural strength of zirconia-based ceramic, but surface roughness was significantly different in the study groups. Clinical significances: Regardless of sandblasting angle, increasing distance to 25 mm significantly decreases surface roughness that may negatively affect zirconia bond strength.


Assuntos
Cimentos Dentários/química , Corrosão Dentária/métodos , Facetas Dentárias , Zircônio/química , Colagem Dentária , Porcelana Dentária , Humanos , Teste de Materiais , Propriedades de Superfície
4.
J Dent (Tehran) ; 11(6): 655-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25628695

RESUMO

OBJECTIVES: Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. MATERIALS AND METHODS: In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side) and antero-posterior (distal of right first molar to the ipsilateral central incisor) measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey's post-hoc test (P<0.05). RESULTS: Alginate type and the pouring time significantly affected the dimensional stability of alginate impressions (both Ps<0.001). Pouring of Hydrogum 5 impressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours. CONCLUSION: Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5) alginates.

5.
J Dent (Tehran) ; 10(2): 112-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23724209

RESUMO

OBJECTIVE: Accurate delivery of torque to implant screws is critical to generate ideal preload in the screw joint and to offer protection against screw loosening. Mechanical torque-limiting devices (MTLDs) are available for this reason. In this study, the accuracy of one type of friction-style and two types of spring-style MTLDs at baseline, following fatigue conditions and sterilization processes were determined. MATERIALS AND METHODS: Five unused MTLDs were selected from each of Straumann (ITI), Astra TECH and CWM systems. To measure the output of each MTLD, a digital torque gauge with a 3-jaw chuck was used to hold the driver. Force was applied to the MTLDs until either the friction styles released at a pre-calibrated torque value or the spring styles flexed to a pre-calibrated limit (target torque value). The peak torque value was recorded and the procedure was repeated 5 times for each MTLD. Then MTLDs were subjected to fatigue conditions at 500 and 1000 times and steam sterilization processes at 50 and 100 times and the peak torque value was recorded again at each stage. RESULTS: Adjusted difference between measured torque values and target torque values differed significantly between stages for all 3 systems. Adjusted difference did not differ significantly between systems at all stages, but differed significantly between two different styles at baseline and 500 times fatigue stages. CONCLUSION: Straumann (ITI) devices differed minimally from target torque values at all stages. MTLDs with Spring-style were significantly more accurate than Friction-style device in achieving their target torque values at baseline and 500 times fatigue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA