Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 918041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783097

RESUMO

Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identified disease-related transcriptomic alterations; however, their relationship to non-lesioned MS brain regions has not been reported and which could identify prodromal or other disease susceptibility signatures. Here, snRNA-seq was used to generate high-quality RRMS vs. SPMS datasets of 33,197 nuclei from 8 normal-appearing MS brains, which revealed divergent cell type-specific changes. Notably, SPMS brains downregulated astrocytic sphingosine kinases (SPHK1/2) - the enzymes required to phosphorylate and activate the MS drug, fingolimod. This reduction was modeled with astrocyte-specific Sphk1/2 null mice in which fingolimod lost activity, supporting functionality of observed transcriptomic changes. These data provide an initial resource for studies of single cells from non-lesioned RRMS and SPMS brains.

2.
J Med Chem ; 64(24): 18193-18208, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34894681

RESUMO

As a result of emerging biological data suggesting that within the c-Jun N-terminal kinase (JNK) family, JNK1 and not JNK2 or JNK3 may be primarily responsible for fibrosis pathology, we sought to identify JNK inhibitors with an increased JNK1 bias relative to our previous clinical compound tanzisertib (CC-930). This manuscript reports the synthesis and structure-activity relationship (SAR) studies for a novel series of JNK inhibitors demonstrating an increased JNK1 bias. SAR optimization on a series of 2,4-dialkylamino-pyrimidine-5-carboxamides resulted in the identification of compounds possessing low nanomolar JNK inhibitory potency, overall kinome selectivity, and the ability to inhibit cellular phosphorylation of the direct JNK substrate c-Jun. Optimization of physicochemical properties in this series resulted in compounds that demonstrated excellent systemic exposure following oral dosing, enabling in vivo efficacy studies and the selection of a candidate for clinical development, CC-90001, which is currently in clinical trials (Phase II) in patients with idiopathic pulmonary fibrosis (NCT03142191).


Assuntos
Cicloexilaminas/farmacologia , Descoberta de Drogas , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Cicloexilaminas/uso terapêutico , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34795060

RESUMO

Down syndrome (DS), trisomy of human chromosome 21 (HSA21), is characterized by lifelong cognitive impairments and the development of the neuropathological hallmarks of Alzheimer's disease (AD). The cellular and molecular modifications responsible for these effects are not understood. Here we performed single-nucleus RNA sequencing (snRNA-seq) employing both short- (Illumina) and long-read (Pacific Biosciences) sequencing technologies on a total of 29 DS and non-DS control prefrontal cortex samples. In DS, the ratio of inhibitory-to-excitatory neurons was significantly increased, which was not observed in previous reports examining sporadic AD. DS microglial transcriptomes displayed AD-related aging and activation signatures in advance of AD neuropathology, with increased microglial expression of C1q complement genes (associated with dendritic pruning) and the HSA21 transcription factor gene RUNX1 Long-read sequencing detected vast RNA isoform diversity within and among specific cell types, including numerous sequences that differed between DS and control brains. Notably, over 8,000 genes produced RNAs containing intra-exonic junctions, including amyloid precursor protein (APP) that had previously been associated with somatic gene recombination. These and related results illuminate large-scale cellular and transcriptomic alterations as features of the aging DS brain.


Assuntos
Envelhecimento/fisiologia , Síndrome de Down/metabolismo , Isoformas de RNA/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Cromossomos Humanos Par 21 , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Síndrome de Down/genética , Expressão Gênica , Humanos , Microglia , RNA/metabolismo , Análise de Sequência de RNA , Regulação para Cima
5.
Nature ; 566(7743): E6, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30670873

RESUMO

In this Article, the top label in Fig. 5d should read 'DISH 3/16' instead of 'DISH 3/17'. This error has been corrected online.

6.
Nature ; 563(7733): 639-645, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464338

RESUMO

The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer's disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant 'genomic cDNAs' (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single nucleotide variations. DNA in situ hybridization identified gencDNAs within single neurons that were distinct from wild-type loci and absent from non-neuronal cells. Mechanistic studies supported neuronal 'retro-insertion' of RNA to produce gencDNAs; this process involved transcription, DNA breaks, reverse transcriptase activity, and age. Neurons from individuals with sporadic Alzheimer's disease showed increased gencDNA diversity, including eleven mutations known to be associated with familial Alzheimer's disease that were absent from healthy neurons. Neuronal gene recombination may allow 'recording' of neural activity for selective 'playback' of preferred gene variants whose expression bypasses splicing; this has implications for cellular diversity, learning and memory, plasticity, and diseases of the human brain.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Variação Genética/genética , Neurônios/citologia , Neurônios/patologia , Recombinação Genética , Processamento Alternativo/genética , Animais , DNA Complementar/análise , DNA Complementar/genética , DNA Polimerase Dirigida por DNA/metabolismo , Éxons/genética , Feminino , Humanos , Íntrons/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Especificidade de Órgãos , Mutação Puntual/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Análise de Sequência de DNA , Deleção de Sequência/genética
7.
J Biol Chem ; 293(38): 14678-14688, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30068552

RESUMO

Fibroblast growth factor 21 (FGF21), an endocrine hormone in the FGF family, plays a critical role in regulating metabolic homeostasis and has emerged as a therapeutic target for metabolic diseases, including Type 2 diabetes mellitus. FGF21 functions through a receptor complex that consists of an FGF receptor (FGFR) and a co-receptor ß-Klotho. Here, we identify and biochemically and structurally characterize 39F7, a high-affinity agonistic monoclonal antibody (mAb) against ß-Klotho that mimics FGF21 function. The co-crystal structure of ß-Klotho KL1 domain in complex with 39F7 Fab revealed that the recognition of 39F7 is centered on Trp-295 of ß-Klotho in a FGF21 noncompetitive manner. KL1 adopts a (ß/α)8 TIM barrel fold which resembles that of ß-glycosylceramidase, but lacks molecular features for enzymatic activity, suggesting that KL1 functions as a scaffold protein instead. In vitro characterization demonstrated that, although 39F7 does not compete with FGF21, it is specific for ß-Klotho/FGFR1c activation. Furthermore, the agonistic activity of 39F7 required the full IgG molecule to be bivalent, suggesting that 39F7 functions by promoting receptor/co-receptor dimerization. Supported by negative stain EM analysis of full-length ß-Klotho, we propose a molecular model wherein the agonistic antibody 39F7 acts in a ß-Klotho- and FGFR1c-dependent manner, mimicking FGF21 activity. More importantly, 39F7 offers promising therapeutic potential in the axis of FGF21 signaling as an antibody therapy alternative to FGF21 analogs for treatment of metabolic diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Membrana/imunologia , Animais , Afinidade de Anticorpos , Células CHO , Cricetulus , Cristalografia por Raios X , Humanos , Proteínas Klotho , Proteínas de Membrana/agonistas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica , Ligação Proteica , Conformação Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
8.
Curr Protoc Mol Biol ; 123(1): e61, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29953734

RESUMO

This article describes how to analyze protein expression in cells infected with recombinant baculovirus on a small scale for optimizing protein production, how to maximize and scale up recombinant protein production, and how to purify recombinant proteins. © 2018 by John Wiley & Sons, Inc.


Assuntos
Proteínas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Animais , Baculoviridae/genética , Expressão Gênica , Técnicas Genéticas , Biossíntese de Proteínas , Células Sf9
9.
Protein Expr Purif ; 125: 1-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26363122

RESUMO

Lecithin-cholesterol acyltransferase (LCAT) is a key enzyme in the esterification of cholesterol and its subsequent incorporation into the core of high density lipoprotein (HDL) particles. It is also involved in reverse cholesterol transport (RCT), the mechanism by which cholesterol is removed from peripheral cells and transported to the liver for excretion. These processes are involved in the development of atherosclerosis and coronary heart disease (CHD) and may have therapeutic implications. This work describes the use of baculovirus as a transducing vector to express LCAT in mammalian cells, expression of the recombinant protein as a high-mannose glycoform suitable for deglycosylation by Endo H and its purification to homogeneity and characterization. The importance of producing underglycosylated forms of secreted glycoproteins to obtain high-resolution crystal structures is discussed.


Assuntos
Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Animais , Transporte Biológico , Colesterol/metabolismo , Ativação Enzimática , Expressão Gênica , Células HEK293 , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9
10.
J Lipid Res ; 56(9): 1711-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26195816

RESUMO

LCAT is intimately involved in HDL maturation and is a key component of the reverse cholesterol transport (RCT) pathway which removes excess cholesterol molecules from the peripheral tissues to the liver for excretion. Patients with loss-of-function LCAT mutations exhibit low levels of HDL cholesterol and corneal opacity. Here we report the 2.65 Å crystal structure of the human LCAT protein. Crystallization required enzymatic removal of N-linked glycans and complex formation with a Fab fragment from a tool antibody. The crystal structure reveals that LCAT has an α/ß hydrolase core with two additional subdomains that play important roles in LCAT function. Subdomain 1 contains the region of LCAT shown to be required for interfacial activation, while subdomain 2 contains the lid and amino acids that shape the substrate binding pocket. Mapping the naturally occurring mutations onto the structure provides insight into how they may affect LCAT enzymatic activity.


Assuntos
Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Colesterol/genética , Cristalografia por Raios X , Humanos , Mutação , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Ligação Proteica , Conformação Proteica , Transdução de Sinais
11.
Structure ; 21(5): 798-809, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23602659

RESUMO

Sphingosine kinase 1 (SphK1) is a lipid kinase that catalyzes the conversion of sphingosine to sphingosine-1-phosphate (S1P), which has been shown to play a role in lymphocyte trafficking, angiogenesis, and response to apoptotic stimuli. As a central enzyme in modulating the S1P levels in cells, SphK1 emerges as an important regulator for diverse cellular functions and a potential target for drug discovery. Here, we present the crystal structures of human SphK1 in the apo form and in complexes with a substrate sphingosine-like lipid, ADP, and an inhibitor at 2.0-2.3 Å resolution. The SphK1 structures reveal a two-domain architecture in which its catalytic site is located in the cleft between the two domains and a hydrophobic lipid-binding pocket is buried in the C-terminal domain. Comparative analysis of these structures with mutagenesis and kinetic studies provides insight into how SphK1 recognizes the lipid substrate and catalyzes ATP-dependent phosphorylation.


Assuntos
Lisofosfolipídeos/química , Esfingosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Humanos , Cinética , Lisofosfolipídeos/metabolismo , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Esfingosina/química , Esfingosina/metabolismo , Especificidade por Substrato
12.
J Immunol ; 188(11): 5547-60, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22544934

RESUMO

V(D)J recombination of Ig and TCR genes is strictly regulated in a lineage- and stage-specific manner by the accessibility of target gene chromatin to the recombinases RAG1 and RAG2. It has been shown that enforced expression of the basic helix-loop-helix protein, E2A, together with RAG1/2 in a nonlymphoid cell line BOSC23 can induce V(D)J recombination in endogenous Igκ and TCR loci by increasing chromatin accessibility of target gene segments. In this study, we demonstrate that ectopically expressed E2A proteins in BOSC23 cells have the ability to bind directly to the promoter and recombination signal sequence of Vκ genes and to recruit histone acetyltransferase CBP/p300. Overexpression of CBP/p300 in conjunction with E2A results in enhancement of E2A-induced histone acetylation, germline transcription, and Igκ rearrangement. Conversely, knockdown of endogenous CBP/p300 expression by small interfering RNA leads to a decrease in histone acetylation, germline transcription and Igκ rearrangement. Furthermore, analyses using a mouse pre-B cell line revealed that endogenous E2A proteins also bind to a distinct set of Vκ genes and regulatory regions in the mouse Igκ locus and act to increase histone acetylation by recruiting p300, confirming the similar findings observed with BOSC23 cells. These observations indicate that E2A plays critical roles in inducing Igκ rearrangement by directly binding to and increasing chromatin accessibility at target gene segments.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Cromatina/genética , Cadeias kappa de Imunoglobulina/genética , Fatores de Transcrição de p300-CBP/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Cromatina/metabolismo , Sinergismo Farmacológico , Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/imunologia , Células Germinativas/enzimologia , Células Germinativas/imunologia , Células Germinativas/metabolismo , Histona Desacetilases/metabolismo , Humanos , Cadeias kappa de Imunoglobulina/metabolismo , Camundongos , Recombinação V(D)J/genética , Fatores de Transcrição de p300-CBP/biossíntese , Fatores de Transcrição de p300-CBP/genética
13.
Proc Natl Acad Sci U S A ; 106(24): 9820-5, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19443683

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) by interacting with the LDL receptor (LDLR) and is an attractive therapeutic target for LDL-C lowering. We have generated a neutralizing anti-PCSK9 antibody, mAb1, that binds to an epitope on PCSK9 adjacent to the region required for LDLR interaction. In vitro, mAb1 inhibits PCSK9 binding to the LDLR and attenuates PCSK9-mediated reduction in LDLR protein levels, thereby increasing LDL uptake. A combination of mAb1 with a statin increases LDLR levels in HepG2 cells more than either treatment alone. In wild-type mice, mAb1 increases hepatic LDLR protein levels approximately 2-fold and lowers total serum cholesterol by up to 36%: this effect is not observed in LDLR(-/-) mice. In cynomolgus monkeys, a single injection of mAb1 reduces serum LDL-C by 80%, and a significant decrease is maintained for 10 days. We conclude that anti-PCSK9 antibodies may be effective therapeutics for treating hypercholesterolemia.


Assuntos
Anticorpos Monoclonais/imunologia , Colesterol/sangue , Testes de Neutralização , Serina Endopeptidases/imunologia , Animais , Colesterol/imunologia , Cristalografia por Raios X , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Receptores de LDL/genética , Receptores de LDL/fisiologia
14.
J Biol Chem ; 283(19): 13174-84, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18326048

RESUMO

The human suppressor of morphogenesis in genitalia-1 (hSMG-1) protein kinase plays dual roles in mRNA surveillance and genotoxic stress response pathways in human cells. Here, we report that small interfering RNA-mediated depletion of hSMG-1, but not ATM, ATR, hUpf1, or hUpf2, in human U2OS osteosarcoma cells markedly increases the magnitude and accelerates the rate of apoptosis induced by tumor necrosis factor-alpha (TNFalpha) stimulation. The increase in TNFalpha-mediated cell killing observed in hSMG-1-depleted cells is not related to the suppression of nonsense-mediated mRNA decay or to the inhibition of TNFalpha-induced NF-kappaB activation. Rather, we observed that loss of hSMG-1 accelerates the degradation of the long form of the FLICE-inhibitory protein (FLIP(L)), an inhibitor of death-inducing signaling complex-mediated caspase-8 activation, in TNFalpha-treated cells. These results suggest that hSMG-1 plays an important role in cell survival during TNFalpha-induced stress.


Assuntos
Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/genética , Biossíntese de Proteínas/genética , Proteínas Serina-Treonina Quinases , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
15.
Structure ; 15(5): 545-52, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17502100

RESUMO

Proprotein convertase subtilisin kexin type 9 (PCSK9) has been shown to be involved in the regulation of extracellular levels of the low-density lipoprotien receptor (LDLR). Although PCSK9 is a subtilase, it has not been shown to degrade the LDLR, and its LDLR-lowering mechanism remains uncertain. Here we report the crystal structure of human PCSK9 at 2.3 A resolution. PCSK9 has subtilisin-like pro- and catalytic domains, and the stable interaction between these domains prevents access to PCSK9's catalytic site. The C-terminal domain of PCSK9 has a novel protein fold and may mediate protein-protein interactions. The structure of PCSK9 provides insight into its biochemical characteristics and biological function.


Assuntos
LDL-Colesterol/sangue , Serina Endopeptidases/química , Serina Endopeptidases/fisiologia , LDL-Colesterol/antagonistas & inibidores , Cristalografia por Raios X , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/fisiologia , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Dobramento de Proteína , Mapeamento de Interação de Proteínas
16.
Artigo em Inglês | MEDLINE | ID: mdl-17138186

RESUMO

OBJECTIVE: To evaluate the chemical composition and crystalline structures of Portland cement, gray ProRoot MTA (gray MTA), white ProRoot MTA (white MTA), and gray MTA-Angelus. STUDY DESIGN: X-ray diffraction analysis was used to identify and characterize crystalline phases, and energy dispersive x-ray spectrometer was used to determine the chemical composition of the test materials. Both powder form and set form were examined. RESULTS: The crystalline structure and chemical composition of gray and white MTA were similar except for the presence of iron in gray MTA. Both were composed mainly of bismuth oxide and calcium silicate oxide. Portland cement was composed mainly of calcium silicate oxide and did not contain bismuth oxide. Gray MTA-Angelus had a lower content of bismuth oxide than ProRoot MTA. There were no noticeable differences in the chemical composition and crystalline structures between the powder and set forms of any of the material tested. CONCLUSION: Portland cement differed from the MTA by the absence of bismuth ions and presence of potassium ions. Gray MTA contained a significant amount of iron when compared with white MTA. In addition, gray MTA-Angelus had a lower content of bismuth oxide than ProRoot MTA.


Assuntos
Materiais Restauradores do Canal Radicular/química , Compostos de Alumínio/química , Bismuto/análise , Compostos de Cálcio/análise , Compostos de Cálcio/química , Cristalização , Cristalografia por Raios X , Cimentos Dentários/química , Combinação de Medicamentos , Ferro/análise , Óxidos/química , Potássio/análise , Silicatos/análise , Silicatos/química , Espectrometria por Raios X
17.
Cell Signal ; 18(7): 982-93, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16199137

RESUMO

IKK-i and TBK1 were recently identified as IKK-related kinases that are activated by toll-like receptors TLR3 and TLR4. These kinases were identified as essential components of the virus-activated as well as LPS-MyD88 independent kinase complex that phosphorylates IRF3 and results in the production of cytokines involved in innate immunity. Both IKK-i and TBK1 have also been implicated in the activation of the NFkappaB pathway but the precise mechanism is not clear. Although the literature to date suggests that IKK-i and TBK1 play redundant roles in TLR3 and TLR4 signaling, recent data suggest that there may be subtle differences in the signaling pathways affected by these kinases. We have generated tetracycline-inducible stable cell lines that express a wild type or kinase-inactive mutant form of IKK-i. Our data suggest that expression of IKK-i can activate both NFkappaB and IRF3, leading to the production of several cytokines including interferon beta. IKK-i most likely acts upstream of IKK2 to activate NFkappaB in these cells since expression of the kinase-inactive version of IKK-i did not inhibit TNFalpha mediated production of inflammatory cytokines. The data suggest that IKK-i is not involved in TNF-alpha mediated signaling but instead could likely play a role in activating IKK2 downstream of Toll-like receptor signaling. We also identified STAT1, Tyk2, and JAK1 as secondary mediators of IKK-i signaling as a result of interferon beta production in these cells.


Assuntos
Citocinas/biossíntese , Fator Regulador 3 de Interferon/fisiologia , NF-kappa B/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Linhagem Celular , Quimiocina CCL5/biossíntese , Quimiocina CXCL10 , Quimiocinas CXC/biossíntese , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Humanos , Quinase I-kappa B , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/biossíntese , Interleucina-8/biossíntese , Janus Quinase 1 , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , TYK2 Quinase , Tetraciclina/farmacologia , Fator de Necrose Tumoral alfa/fisiologia
18.
Curr Protoc Mol Biol ; Chapter 16: Unit 16.10, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18265340

RESUMO

This unit describes the maintenance and care of insect cell cultures as well as the generation, purification, and storage of recombinant baculoviruses. Procedures are included for maintenance and subculturing of insect cells and cotransfection of insect cells with linearized baculovirus DNA and recombinant transfer plasmid containing the gene of interest. In the event that the linearized virus is not available, wild-type baculovirus (AcMNPV) DNA may be used to produce recombinant baculoviruses. A procedure is also included for the generation of recombinant baculoviruses using a novel method, direct cloning, which eliminates the need to first clone the gene of interest into a baculoviral transfer vector. Preparation of baculovirus infection stocks from both monolayer and suspension cultures is also described. Finally, a protocol is given for a plaque assay to be used for determining the titer of baculoviral stocks as well as for selection of recombinants and plaque purification.


Assuntos
Baculoviridae/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Clonagem Molecular/métodos , Vetores Genéticos/fisiologia , Cultura de Vírus/métodos , Animais , Baculoviridae/genética , Baculoviridae/fisiologia , Linhagem Celular/metabolismo , Linhagem Celular/virologia , DNA Complementar/genética , DNA Recombinante/genética , DNA Viral/genética , Vetores Genéticos/genética , Indicadores e Reagentes , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/crescimento & desenvolvimento , Nucleopoliedrovírus/fisiologia , Spodoptera/citologia , Spodoptera/virologia , Transfecção/métodos , Ensaio de Placa Viral
20.
Curr Protoc Mol Biol ; Chapter 16: Unit 16.9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18265342

RESUMO

Baculoviruses have emerged as a popular system for overproducing recombinant proteins in eukaryotic cells. This unit gives an overview of the baculovirus expression system, including discussion of the baculovirus life cycle, and post-translational modifications that occur in insect cells. In addition, the steps for overproducing proteins in the baculovirus systems are described along with recommendations for choosing an appropriate baculovirus vector and DNA, and reagents and equipment necessary for implementing the whole overexpression system.


Assuntos
Baculoviridae/genética , Clonagem Molecular/métodos , Vetores Genéticos/genética , Animais , Baculoviridae/fisiologia , Linhagem Celular/metabolismo , DNA Recombinante/genética , DNA Viral/genética , Indicadores e Reagentes , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/fisiologia , Proteínas de Matriz de Corpos de Inclusão , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Spodoptera/citologia , Spodoptera/virologia , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA