Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Neurosci Biobehav Rev ; 161: 105653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582194

RESUMO

The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.


Assuntos
Evolução Biológica , Microbioma Gastrointestinal , Classe Social , Humanos , Microbioma Gastrointestinal/fisiologia , Animais , Eixo Encéfalo-Intestino/fisiologia , Transtornos Mentais/microbiologia , Saúde Mental , Baixo Nível Socioeconômico
2.
Front Allergy ; 4: 1220481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37772259

RESUMO

In wealthy urbanised societies there have been striking increases in chronic inflammatory disorders such as allergies, autoimmunity and inflammatory bowel diseases. There has also been an increase in the prevalence of individuals with systemically raised levels of inflammatory biomarkers correlating with increased risk of metabolic, cardiovascular and psychiatric problems. These changing disease patterns indicate a broad failure of the mechanisms that should stop the immune system from attacking harmless allergens, components of self or gut contents, and that should terminate inappropriate inflammation. The Old Friends Hypothesis postulates that this broad failure of immunoregulation is due to inadequate exposures to the microorganisms that drive development of the immune system, and drive the expansion of components such as regulatory T cells (Treg) that mediate immunoregulatory mechanisms. An evolutionary approach helps us to identify the organisms on which we are in a state of evolved dependence for this function (Old Friends). The bottom line is that most of the organisms that drive the regulatory arm of the immune system come from our mothers and family and from the natural environment (including animals) and many of these organisms are symbiotic components of a healthy microbiota. Lifestyle changes that are interrupting our exposure to these organisms can now be identified, and many are closely associated with low socioeconomic status (SES) in wealthy countries. These insights will facilitate the development of education, diets and urban planning that can correct the immunoregulatory deficit, while simultaneously reducing other contributory factors such as epithelial damage.

3.
mSystems ; 7(2): e0143821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35285679

RESUMO

Healthy development and function of essentially all physiological systems and organs, including the brain, require exposure to the microbiota of our mothers and of the natural environment, especially in early life. We also know that some infections, if we survive them, modulate the immune system in relevant ways. If we study the evolution of the immune and metabolic systems, we can understand how these requirements developed and the nature of the organisms that we need to encounter. We can then begin to identify the mechanisms of the beneficial effects of these exposures. Against this evolutionary background, we can analyze the ways in which the modern urban lifestyle, particularly for individuals experiencing low socioeconomic status (SES), results in deficient or distorted microbial exposures and microbiomes. Thus, an evolutionary approach facilitates the identification of practical solutions to the growing scandal of health disparities linked to inequality.


Assuntos
Sistema Imunitário , Estilo de Vida , Feminino , Humanos , Fatores Socioeconômicos , Baixo Nível Socioeconômico , Disparidades nos Níveis de Saúde
5.
J Allergy Clin Immunol ; 148(1): 33-39, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033844

RESUMO

It is often suggested that hygiene is not compatible with the microbial exposures that are necessary for establishment of the immune system in early life. However, when we analyze the microbial exposures of modern humans in the context of human evolution and history, it becomes evident that whereas children need exposure to the microbiotas of their mothers, other family members, and the natural environment, exposure to the unnatural microbiota of the modern home is less relevant. In addition, any benefits of exposure to the infections of childhood within their household setting are at least partly replaced by the recently revealed nonspecific effects of vaccines. This article shows how targeting hygiene practices at key risk moments and sites can maximize protection against infection while minimizing any impact on essential microbial exposures. Moreover, this targeting must aim to reduce direct exposure of children to cleaning agents because those agents probably exert TH2-adjuvant effects that trigger allergic responses to normally innocuous antigens. Finally, we need to halt the flow of publications in the scientific literature and the media that blame hygiene for the increases in immunoregulatory disorders. Appropriately targeted hygiene behavior is compatible with a healthy lifestyle that promotes exposure to essential microorganisms.


Assuntos
Sistema Imunitário/imunologia , Microbiota/imunologia , Animais , Humanos , Higiene , Hipersensibilidade/imunologia
6.
Front Psychiatry ; 11: 353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457661

RESUMO

The prevalence of stress-associated somatic and psychiatric disorders is increased in environments offering a narrow relative to a wide range of microbial exposure. Moreover, different animal and human studies suggest that an overreactive immune system not only accompanies stress-associated disorders, but might even be causally involved in their pathogenesis. In support of this hypothesis, we recently showed that urban upbringing in the absence of daily contact with pets, compared to rural upbringing in the presence of daily contact with farm animals, is associated with a more pronounced immune activation following acute psychosocial stressor exposure induced by the Trier Social Stress Test (TSST). Here we employed 16S rRNA gene sequencing to test whether this difference in TSST-induced immune activation between urban upbringing in the absence of daily contact with pets (n = 20) compared with rural upbringing in the presence of daily contact with farm animals (n = 20) is associated with differences in the composition of the salivary microbiome. Although we did not detect any differences in alpha or beta diversity measures of the salivary microbiome between the two experimental groups, statistical analysis revealed that the salivary microbial beta diversity was significantly higher in participants with absolutely no animal contact (n = 5, urban participants) until the age of 15 compared to all other participants (n = 35) reporting either daily contact with farm animals (n = 20, rural participants) or occasional pet contact (n = 15, urban participants). Interestingly, when comparing these urban participants with absolutely no pet contact to the remaining urban participants with occasional pet contact, the former also displayed a significantly higher immune, but not hypothalamic-pituitary-adrenal (HPA) axis or sympathetic nervous system (SNS) activation, following TSST exposure. In summary, we conclude that only urban upbringing with absolutely no animal contact had long-lasting effects on the composition of the salivary microbiome and potentiates the negative consequences of urban upbringing on stress-induced immune activation.

7.
Psychopharmacology (Berl) ; 236(5): 1653-1670, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31119329

RESUMO

RATIONALE: Mycobacterium vaccae (NCTC 11659) is an environmental saprophytic bacterium with anti-inflammatory, immunoregulatory, and stress resilience properties. Previous studies have shown that whole, heat-killed preparations of M. vaccae prevent allergic airway inflammation in a murine model of allergic asthma. Recent studies also demonstrate that immunization with M. vaccae prevents stress-induced exaggeration of proinflammatory cytokine secretion from mesenteric lymph node cells stimulated ex vivo, prevents stress-induced exaggeration of chemically induced colitis in a model of inflammatory bowel disease, and prevents stress-induced anxiety-like defensive behavioral responses. Furthermore, immunization with M. vaccae induces anti-inflammatory responses in the brain and prevents stress-induced exaggeration of microglial priming. However, the molecular mechanisms underlying anti-inflammatory effects of M. vaccae are not known. OBJECTIVES: Our objective was to identify and characterize novel anti-inflammatory molecules from M. vaccae NCTC 11659. METHODS: We have purified and identified a unique anti-inflammatory triglyceride, 1,2,3-tri [Z-10-hexadecenoyl] glycerol, from M. vaccae and evaluated its effects in freshly isolated murine peritoneal macrophages. RESULTS: The free fatty acid form of 1,2,3-tri [Z-10-hexadecenoyl] glycerol, 10(Z)-hexadecenoic acid, decreased lipopolysaccharide-stimulated secretion of the proinflammatory cytokine IL-6 ex vivo. Meanwhile, next-generation RNA sequencing revealed that pretreatment with 10(Z)-hexadecenoic acid upregulated genes associated with peroxisome proliferator-activated receptor alpha (PPARα) signaling in lipopolysaccharide-stimulated macrophages, in association with a broad transcriptional repression of inflammatory markers. We confirmed using luciferase-based transfection assays that 10(Z)-hexadecenoic acid activated PPARα signaling, but not PPARγ, PPARδ, or retinoic acid receptor (RAR) α signaling. The effects of 10(Z)-hexadecenoic acid on lipopolysaccharide-stimulated secretion of IL-6 were prevented by PPARα antagonists and absent in PPARα-deficient mice. CONCLUSION: Future studies should evaluate the effects of 10(Z)-hexadecenoic acid on stress-induced exaggeration of peripheral inflammatory signaling, central neuroinflammatory signaling, and anxiety- and fear-related defensive behavioral responses.


Assuntos
Anti-Inflamatórios/imunologia , Anti-Inflamatórios/isolamento & purificação , Mycobacterium/imunologia , Mycobacterium/isolamento & purificação , Estresse Psicológico/imunologia , Estresse Psicológico/prevenção & controle , Animais , Ansiedade/induzido quimicamente , Ansiedade/imunologia , Ansiedade/prevenção & controle , Colite/induzido quimicamente , Colite/imunologia , Colite/prevenção & controle , Medo/efeitos dos fármacos , Medo/fisiologia , Inflamação/imunologia , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Microbiologia do Solo , Estresse Psicológico/induzido quimicamente
8.
Proc Natl Acad Sci U S A ; 115(20): 5259-5264, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712842

RESUMO

Urbanization is on the rise, and environments offering a narrow range of microbial exposures are linked to an increased prevalence of both physical and mental disorders. Human and animal studies suggest that an overreactive immune system not only accompanies stress-associated disorders but might even be causally involved in their pathogenesis. Here, we show in young [mean age, years (SD): rural, 25.1 (0.78); urban, 24.5 (0.88)] healthy human volunteers that urban upbringing in the absence of pets (n = 20), relative to rural upbringing in the presence of farm animals (n = 20), was associated with a more pronounced increase in the number of peripheral blood mononuclear cells (PBMCs) and plasma interleukin 6 (IL-6) concentrations following acute psychosocial stress induced by the Trier social stress test (TSST). Moreover, ex vivo-cultured PBMCs from urban participants raised in the absence of animals secreted more IL-6 in response to the T cell-specific mitogen Con A. In turn, antiinflammatory IL-10 secretion was suppressed following TSST in urban participants raised in the absence of animals, suggesting immunoregulatory deficits, relative to rural participants raised in the presence of animals. Questionnaires, plasma cortisol, and salivary α-amylase, however, indicated the experimental protocol was more stressful and anxiogenic for rural participants raised in the presence of animals. Together, our findings support the hypothesis that urban vs. rural upbringing in the absence or presence of animals, respectively, increases vulnerability to stress-associated physical and mental disorders by compromising adequate resolution of systemic immune activation following social stress and, in turn, aggravating stress-associated systemic immune activation.


Assuntos
Citocinas/sangue , Imunidade Celular/imunologia , Leucócitos Mononucleares/imunologia , Animais de Estimação , População Rural/estatística & dados numéricos , Estresse Psicológico/fisiopatologia , População Urbana/estatística & dados numéricos , Adulto , Animais , Humanos , Hidrocortisona/sangue , Sistema Hipotálamo-Hipofisário/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Adulto Jovem
9.
Sci Total Environ ; 627: 1018-1038, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426121

RESUMO

Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making.


Assuntos
Ecossistema , Microbiologia Ambiental , Atividades Humanas , Animais , Monitoramento Ambiental , Humanos , Estilo de Vida , Microbiota , Plantas
10.
Lancet ; 390(10093): 521-530, 2017 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-28792414

RESUMO

A bacterium was once a component of the ancestor of all eukaryotic cells, and much of the human genome originated in microorganisms. Today, all vertebrates harbour large communities of microorganisms (microbiota), particularly in the gut, and at least 20% of the small molecules in human blood are products of the microbiota. Changing human lifestyles and medical practices are disturbing the content and diversity of the microbiota, while simultaneously reducing our exposures to the so-called old infections and to organisms from the natural environment with which human beings co-evolved. Meanwhile, population growth is increasing the exposure of human beings to novel pathogens, particularly the crowd infections that were not part of our evolutionary history. Thus some microbes have co-evolved with human beings and play crucial roles in our physiology and metabolism, whereas others are entirely intrusive. Human metabolism is therefore a tug-of-war between managing beneficial microbes, excluding detrimental ones, and channelling as much energy as is available into other essential functions (eg, growth, maintenance, reproduction). This tug-of-war shapes the passage of each individual through life history decision nodes (eg, how fast to grow, when to mature, and how long to live).


Assuntos
Evolução Biológica , Microbiota/fisiologia , Microbioma Gastrointestinal/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Sistema Imunitário/microbiologia , Transtornos Mentais/imunologia , Transtornos Mentais/microbiologia , Saúde Pública
11.
Curr Environ Health Rep ; 3(3): 270-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27436048

RESUMO

The hygiene or "Old Friends" hypothesis proposes that the epidemic of inflammatory disease in modern urban societies stems at least in part from reduced exposure to microbes that normally prime mammalian immunoregulatory circuits and suppress inappropriate inflammation. Such diseases include but are not limited to allergies and asthma; we and others have proposed that the markedly reduced exposure to these Old Friends in modern urban societies may also increase vulnerability to neurodevelopmental disorders and stress-related psychiatric disorders, such as anxiety and affective disorders, where data are emerging in support of inflammation as a risk factor. Here, we review recent advances in our understanding of the potential for Old Friends, including environmental microbial inputs, to modify risk for inflammatory disease, with a focus on neurodevelopmental and psychiatric conditions. We highlight potential mechanisms, involving bacterially derived metabolites, bacterial antigens, and helminthic antigens, through which these inputs promote immunoregulation. Though findings are encouraging, significant human subjects' research is required to evaluate the potential impact of Old Friends, including environmental microbial inputs, on biological signatures and clinically meaningful mental health prevention and intervention outcomes.


Assuntos
Imunomodulação/fisiologia , Saúde Mental , Microbiota/fisiologia , Saúde Pública , Animais , Ansiedade/psicologia , Depressão/psicologia , Humanos , Inflamação/complicações , Inflamação/psicologia
12.
J Allergy Clin Immunol ; 138(1): 47-56, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27373325

RESUMO

Recent research indicates that chronic inflammatory diseases, including allergies and autoimmune and neuropsychiatric diseases, share common pathways of cellular and molecular dysregulation. It was the aim of the International von-Behring-Röntgen Symposium (October 16-18, 2014, in Marburg, Germany) to discuss recent developments in this field. These include a concept of biodiversity; the contribution of urbanization, lifestyle factors, and nutrition (eg, vitamin D); and new mechanisms of metabolic and immune dysregulation, such as extracellular and intracellular RNAs and cellular and mitochondrial stress. Epigenetic mechanisms contribute further to altered gene expression and therefore to the development of chronic inflammation. These novel findings provide the foundation for further development of preventive and therapeutic strategies.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Animais , Doença Crônica , Metabolismo Energético , Meio Ambiente , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Microbiota/imunologia
13.
Perspect Public Health ; 136(4): 213-24, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27354505

RESUMO

AIMS: To review the burden of allergic and infectious diseases and the evidence for a link to microbial exposure, the human microbiome and immune system, and to assess whether we could develop lifestyles which reconnect us with exposures which could reduce the risk of allergic disease while also protecting against infectious disease. METHODS: Using methodology based on the Delphi technique, six experts in infectious and allergic disease were surveyed to allow for elicitation of group judgement and consensus view on issues pertinent to the aim. RESULTS: Key themes emerged where evidence shows that interaction with microbes that inhabit the natural environment and human microbiome plays an essential role in immune regulation. Changes in lifestyle and environmental exposure, rapid urbanisation, altered diet and antibiotic use have had profound effects on the human microbiome, leading to failure of immunotolerance and increased risk of allergic disease. Although evidence supports the concept of immune regulation driven by microbe-host interactions, the term 'hygiene hypothesis' is a misleading misnomer. There is no good evidence that hygiene, as the public understands, is responsible for the clinically relevant changes to microbial exposures. CONCLUSION: Evidence suggests a combination of strategies, including natural childbirth, breast feeding, increased social exposure through sport, other outdoor activities, less time spent indoors, diet and appropriate antibiotic use, may help restore the microbiome and perhaps reduce risks of allergic disease. Preventive efforts must focus on early life. The term 'hygiene hypothesis' must be abandoned. Promotion of a risk assessment approach (targeted hygiene) provides a framework for maximising protection against pathogen exposure while allowing spread of essential microbes between family members. To build on these findings, we must change public, public health and professional perceptions about the microbiome and about hygiene. We need to restore public understanding of hygiene as a means to prevent infectious disease.


Assuntos
Exposição Ambiental , Hipótese da Higiene , Hipersensibilidade , Microbiota , Técnica Delphi , Feminino , Humanos , Higiene , Masculino
14.
Int J Mycobacteriol ; 5(2): 120-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27242221

RESUMO

OBJECTIVE/BACKGROUND: The development of new tools capable of targeting Mycobacterium tuberculosis (Mtb)-infected cells have potential applications in diagnosis, treatment, and prevention of tuberculosis. In Mtb-infected cells, CD1b molecules present Mtb lipids to the immune system (Mtb lipid-CD1b complexes). Because of the lack of CD1b polymorphism, specific Mtb lipid-CD1b complexes could be considered as universal Mtb infection markers. 2-Stearoyl-3-hydroxyphthioceranoyl-2'-sulfate-α-α'-d-trehalose (Ac2SGL) is specific for Mtb, and is not present in other mycobacterial species. The CD1b-Ac2SGL complexes are expressed on the surface of human cells infected with Mtb. The aim of this study was to generate ligands capable of binding these CD1b-Ac2SGL complexes. METHODS: A synthetic human scFv phage antibody library was used to select phage-displayed antibody fragments that recognized CD1b-Ac2SGL using CD1b-transfected THP-1 cells loaded with Ac2SGL. RESULTS: One clone, D11-a single, light-variable domain (kappa) antibody (dAbκ11)-showed high relative binding to the Ac2SGL-CD1b complex. CONCLUSION: A ligand recognizing the Ac2SGL-CD1b complex was obtained, which is a potential candidate to be further tested for diagnostic and therapeutic applications.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos CD1/imunologia , Glicolipídeos/imunologia , Mycobacterium tuberculosis/imunologia , Anticorpos de Cadeia Única/genética , Tuberculose/imunologia , Anticorpos Antibacterianos/genética , Antígenos CD1/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Expressão Gênica , Humanos , Mycobacterium tuberculosis/genética , Anticorpos de Cadeia Única/imunologia , Tuberculose/microbiologia
15.
Proc Natl Acad Sci U S A ; 113(22): E3130-9, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185913

RESUMO

The prevalence of inflammatory diseases is increasing in modern urban societies. Inflammation increases risk of stress-related pathology; consequently, immunoregulatory or antiinflammatory approaches may protect against negative stress-related outcomes. We show that stress disrupts the homeostatic relationship between the microbiota and the host, resulting in exaggerated inflammation. Repeated immunization with a heat-killed preparation of Mycobacterium vaccae, an immunoregulatory environmental microorganism, reduced subordinate, flight, and avoiding behavioral responses to a dominant aggressor in a murine model of chronic psychosocial stress when tested 1-2 wk following the final immunization. Furthermore, immunization with M. vaccae prevented stress-induced spontaneous colitis and, in stressed mice, induced anxiolytic or fear-reducing effects as measured on the elevated plus-maze, despite stress-induced gut microbiota changes characteristic of gut infection and colitis. Immunization with M. vaccae also prevented stress-induced aggravation of colitis in a model of inflammatory bowel disease. Depletion of regulatory T cells negated protective effects of immunization with M. vaccae on stress-induced colitis and anxiety-like or fear behaviors. These data provide a framework for developing microbiome- and immunoregulation-based strategies for prevention of stress-related pathologies.


Assuntos
Ansiedade/complicações , Vacinas Bacterianas/administração & dosagem , Comportamento Animal , Colite/prevenção & controle , Mycobacterium/crescimento & desenvolvimento , Estresse Psicológico/complicações , Vacinas de Produtos Inativados/administração & dosagem , Animais , Ansiedade/fisiopatologia , Colite/etiologia , Colite/patologia , Imunização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/fisiopatologia , Linfócitos T Reguladores/imunologia
16.
Ann Med ; 47(3): 218-25, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25904094

RESUMO

Urban living in built environments, combined with the use of processed water and food, may not provide the microbial stimulation necessary for a balanced development of immune function. Many chronic inflammatory disorders, including allergic, autoimmune, metabolic, and even some behavioural disorders, are linked to alteration in the human commensal microbiota. Sedentary lifestyle is associated with reduced exposure to a broad spectrum of environmental micro-organisms and surplus energy balance, both risk factors of chronic inflammatory disorders. According to the Biodiversity Hypothesis, an environment with diverse macrobiota and microbiota modifies and enriches the human microbiota, which in turn is crucial in the development and maintenance of appropriate immune function. These issues were discussed in the symposium 'Chronic Inflammation, Lifestyle and Environment', held in Helsinki, 20-22 August 2014, under the sponsorship of the Yrjö Jahnsson Foundation. This paper briefly outlines the recent findings in the context of the environment, lifestyle, and health; discusses the forces that undermine immune tolerance in urban environments; and highlights the possibilities to restore broken immune tolerance among urban dwellers, summarizing the main messages in four statements and calling for actions to combat major public health threats.


Assuntos
Biodiversidade , Inflamação/etiologia , Microbiota/imunologia , Imunidade Adaptativa/imunologia , Doença Crônica , Dieta Ocidental , Meio Ambiente , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Comportamento Sedentário , Urbanização
17.
Brain Res ; 1617: 47-62, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24732404

RESUMO

The immune system influences brain development and function. Hygiene and other early childhood influences impact the subsequent function of the immune system during adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric disorders. Inflammatory events during pregnancy can act directly to cause developmental problems in the central nervous system (CNS) that have been implicated in schizophrenia and autism. The immune system also acts indirectly by "farming" the intestinal microbiota, which then influences brain development and function via the multiple pathways that constitute the gut-brain axis. The gut microbiota also regulates the immune system. Regulation of the immune system is crucial because inflammatory states in pregnancy need to be limited, and throughout life inflammation needs to be terminated completely when not required; for example, persistently raised levels of background inflammation during adulthood (in the presence or absence of a clinically apparent inflammatory stimulus) correlate with an increased risk of depression. A number of factors in the perinatal period, notably immigration from rural low-income to rich developed settings, caesarean delivery, breastfeeding and antibiotic abuse have profound effects on the microbiota and on immunoregulation during early life that persist into adulthood. Many aspects of the modern western environment deprive the infant of the immunoregulatory organisms with which humans co-evolved, while encouraging exposure to non-immunoregulatory organisms, associated with more recently evolved "crowd" infections. Finally, there are complex interactions between perinatal psychosocial stressors, the microbiota, and the immune system that have significant additional effects on both physical and psychiatric wellbeing in subsequent adulthood. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease.


Assuntos
Encéfalo/imunologia , Higiene , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/imunologia , Animais , Evolução Biológica , Encéfalo/crescimento & desenvolvimento , Criança , Feminino , Desenvolvimento Fetal/imunologia , Humanos , Doenças do Sistema Imunitário/etiologia , Inflamação/imunologia , Estilo de Vida , Transtornos Mentais/imunologia , Microbiota/imunologia , Gravidez , Fatores Socioeconômicos , Estresse Psicológico/imunologia
18.
Adv Exp Med Biol ; 817: 319-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24997041

RESUMO

Regulation of the immune system is an important function of the gut microbiota. Increasing evidence suggests that modern living conditions cause the gut microbiota to deviate from the form it took during human evolution. Contributing factors include loss of helminth infections, encountering less microbial biodiversity, and modulation of the microbiota composition by diet and antibiotic use. Thus the gut microbiota is a major mediator of the hygiene hypothesis (or as we prefer, "Old Friends" mechanism), which describes the role of organisms with which we co-evolved, and that needed to be tolerated, as crucial inducers of immunoregulation. At least partly as a consequence of reduced exposure to immunoregulatory Old Friends, many but not all of which resided in the gut, high-income countries are undergoing large increases in a wide range of chronic inflammatory disorders including allergies, autoimmunity and inflammatory bowel diseases. Depression, anxiety and reduced stress resilience are comorbid with these conditions, or can occur in individuals with persistently raised circulating levels of biomarkers of inflammation in the absence of clinically apparent peripheral inflammatory disease. Moreover poorly regulated inflammation during pregnancy might contribute to brain developmental abnormalities that underlie some cases of autism spectrum disorders and schizophrenia. In this chapter we explain how the gut microbiota drives immunoregulation, how faulty immunoregulation and inflammation predispose to psychiatric disease, and how psychological stress drives further inflammation via pathways that involve the gut and microbiota. We also outline how this two-way relationship between the brain and inflammation implicates the microbiota, Old Friends and immunoregulation in the control of stress resilience.


Assuntos
Imunomodulação/fisiologia , Intestinos/microbiologia , Transtornos Mentais/etiologia , Microbiota/fisiologia , Animais , Encéfalo/fisiologia , Emigração e Imigração , Humanos , Inflamação/complicações , Inflamação/psicologia , Estresse Psicológico/microbiologia
19.
Proc Natl Acad Sci U S A ; 110(46): 18360-7, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24154724

RESUMO

Epidemiological studies suggest that living close to the natural environment is associated with long-term health benefits including reduced death rates, reduced cardiovascular disease, and reduced psychiatric problems. This is often attributed to psychological mechanisms, boosted by exercise, social interactions, and sunlight. Compared with urban environments, exposure to green spaces does indeed trigger rapid psychological, physiological, and endocrinological effects. However, there is little evidence that these rapid transient effects cause long-term health benefits or even that they are a specific property of natural environments. Meanwhile, the illnesses that are increasing in high-income countries are associated with failing immunoregulation and poorly regulated inflammatory responses, manifested as chronically raised C-reactive protein and proinflammatory cytokines. This failure of immunoregulation is partly attributable to a lack of exposure to organisms ("Old Friends") from mankind's evolutionary past that needed to be tolerated and therefore evolved roles in driving immunoregulatory mechanisms. Some Old Friends (such as helminths and infections picked up at birth that established carrier states) are almost eliminated from the urban environment. This increases our dependence on Old Friends derived from our mothers, other people, animals, and the environment. It is suggested that the requirement for microbial input from the environment to drive immunoregulation is a major component of the beneficial effect of green space, and a neglected ecosystem service that is essential for our well-being. This insight will allow green spaces to be designed to optimize health benefits and will provide impetus from health systems for the preservation of ecosystem biodiversity.


Assuntos
Imunidade Adaptativa/imunologia , Biodiversidade , Meio Ambiente , Hipótese da Higiene , Microbiota/imunologia , Humanos
20.
Pathog Dis ; 69(3): 176-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23873753

RESUMO

Antibodies have demonstrated having a protective effect in animal models of tuberculosis (TB). These experiments have considered the specificity of antigen recognition and the different isotypes and subclasses as significant contributors of this effect. However, the carbohydrate chain heterogeneity on the Fc region of IgG (Fc-IgG) can play an important role in modulating the immune response. Patients with TB usually have high titers of specific IgG; however, the carbohydrate associated with Fc-IgG usually lacks galactose. To assess the effect of this abnormal IgG in murine pulmonary TB, we evaluated the specificity of recognition to Mycobacterium tuberculosis antigens in vitro and protective effects in vivo comparing human intravenous immunoglobulin (IVIg) and IVIg treated with an endoglycosidase to remove the glycan residues (EndoS-treated IVIg). Our results showed similar antigen recognition. The study of distribution and kinetics of IVIg in serum and bronchial lavage after intraperitoneal (i.p.) administration in mice showed that IVIg circulates for 21 days. Finally, the protective effect of intact and EndoS-treated IVIg administered by i.p was studied in a murine model of progressive TB. IVIg treatment caused reduction in pulmonary bacilli loads, larger granulomas, and less pneumonia, while animals treated with EndoS-treated IVIg were not protected compared with control animals. Thus, IVIg has a protective activity in experimental pulmonary TB, and this effect requires intact Fc oligosaccharides.


Assuntos
Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Tuberculose/imunologia , Tuberculose/metabolismo , Animais , Antígenos de Bactérias/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulinas Intravenosas/administração & dosagem , Imunoglobulinas Intravenosas/imunologia , Imunoglobulinas Intravenosas/farmacocinética , Infusões Parenterais , Masculino , Camundongos , Mycobacterium tuberculosis/imunologia , Polissacarídeos/química , Tuberculose/patologia , Tuberculose/prevenção & controle , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia , Tuberculose Pulmonar/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA