Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 322(6): E517-E527, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35403438

RESUMO

Insulin resistance is a major public health burden that often results in other comorbidities including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD), and cardiovascular disease. An insulin sensitizer has the potential to become a disease-modifying therapy. It remains an unmet medical need to identify therapeutics that target the insulin signaling pathway to treat insulin resistance. Low-molecular-weight protein tyrosine phosphatase (LMPTP) negatively regulates insulin signaling and has emerged as a potential therapeutic target for insulin sensitization. Genetic studies have demonstrated that LMPTP is positively associated with obesity in humans and promotes insulin resistance in rodents. A recent study showed that pharmacological inhibition or genetic deletion of LMPTP protects mice from high-fat diet-induced insulin resistance and diabetes. Here, we show that loss of LMPTP by genetic deletion has no significant effects on improving glucose tolerance in lean or diet-induced obese mice. Furthermore, our data demonstrate that LMPTP deficiency potentiates cardiac hypertrophy that leads to mild cardiac dysfunction. Our findings suggest that the development of LMPTP inhibitors for the treatment of insulin resistance and type 2 diabetes should be reevaluated, and further studies are needed to characterize the molecular and pathophysiological role of LMPTP.NEW & NOTEWORTHY Inhibition of LMPTP with a small-molecule inhibitor, Cmpd23, improves glucose tolerance in mice as reported earlier. However, genetic deficiency of the LMPTP-encoding gene, Acp1, has limited effects on glucose metabolism but leads to mild cardiac hypertrophy in mice. The findings suggest the potential off-target effects of Cmpd23 and call for reevaluation of LMPTP as a therapeutic target for the treatment of insulin resistance and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/uso terapêutico , Magreza
2.
Front Immunol ; 12: 752348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912335

RESUMO

Programmed cell death-1 (PD-1) blockade has a profound effect on the ability of the immune system to eliminate tumors, but many questions remain about the cell types involved and the underlying mechanisms of immune activation. To shed some light on this, the cellular and molecular events following inhibition of PD-1 signaling was investigated in the MC-38 colon carcinoma model using constitutive (PD-1 KO) and conditional (PD1cKO) mice and in wild-type mice treated with PD-1 antibody. The impact on both tumor growth and the development of tumor immunity was assessed. In the PD-1cKO mice, a complete deletion of Pdcd1 in tumor-infiltrating T cells (TILs) after tamoxifen treatment led to the inhibition of tumor growth of both small and large tumors. Extensive immune phenotypic analysis of the TILs by flow and mass cytometry identified 20-different T cell subsets of which specifically 5-CD8 positive ones expanded in all three models after PD-1 blockade. All five subsets expressed granzyme B and interferon gamma (IFNγ). Gene expression analysis of the tumor further supported the phenotypic analysis in both PD-1cKO- and PD-1 Ab-treated mice and showed an upregulation of pathways related to CD4 and CD8 T-cell activation, enhanced signaling through costimulatory molecules and IFNγ, and non-T-cell processes. Altogether, using PD-1cKO mice, we define the intrinsic nature of PD-1 suppression of CD8 T-cell responses in tumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Experimentais/imunologia , Receptor de Morte Celular Programada 1/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/deficiência
3.
Methods ; 191: 107-119, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838271

RESUMO

Gene targeting and additive (random) transgenesis have proven to be powerful technologies with which to decipher the mammalian genome. With the advent of CRISPR/Cas9 genome editing, the ability to inactivate or modify the function of a gene has become even more accessible. However, the impact of each generated modification may be different from what was initially desired. Minimal validation of mutant alleles from genetically altered (GA) rodents remains essential to guarantee the interpretation of experimental results. The protocol described here combines design strategies for genomic and functional validation of genetically modified alleles with droplet digital PCR (ddPCR) or quantitative PCR (qPCR) for target DNA or mRNA quantification. In-depth analysis of the results obtained with GA models through the analysis of target DNA and mRNA quantification is also provided, to evaluate which pitfalls can be detected using these two methods, and we propose recommendations for the characterization of different type of mutant allele (knock-out, knock-in, conditional knock-out, FLEx, IKMC model or transgenic). Our results also highlight the possibility that mRNA expression of any mutated allele can be different from what might be expected in theory or according to common assumptions. For example, mRNA analyses on knock-out lines showed that nonsense-mediated mRNA decay is generally not achieved with a critical-exon approach. Likewise, comparison of multiple conditional lines crossed with the same CreERT2 deleter showed that the inactivation outcome was very different for each conditional model. DNA quantification by ddPCR of G0 to G2 generations of transgenic rodents generated by pronuclear injection showed an unexpected variability, demonstrating that G1 generation rodents cannot be considered as established lines.


Assuntos
Sistemas CRISPR-Cas , Alelos , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , DNA , Genômica , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Roedores/genética
5.
Front Immunol ; 11: 573405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117369

RESUMO

The molecule "T cell immunoreceptor with immunoglobulin and ITIM domain," or TIGIT, has recently received much attention as a promising target in the treatment of various malignancies. In spite of the quick progression of anti-TIGIT antibodies into clinical testing both as monotherapy and in combination with programmed cell death-1 (PD-1)-directed immune checkpoint blockade, the molecular mechanism behind the observed therapeutic benefits remains poorly understood. Here we demonstrate, using mouse tumor models, that TIGIT blocking antibodies with functional Fc binding potential induce effective anti-tumor response. Our observations reveal that the anti-TIGIT therapeutic effect is not achieved by depletion of intratumoral regulatory T cells (Treg) or any cell population expressing TIGIT, but instead is mediated by possible "reverse activating signals" through FcγRs on myeloid cells, inducing expression of various mediators such as cytokines and chemokines. Furthermore, we discovered an induction of a robust and persistent granzyme B and perforin response, distinct from a predominantly interferon-γ (IFN-γ)-driven anti-PD-1 blockade. Our observations, for the first time, provide the basis for a mechanistic hypothesis involving the requirement of a functional Fc domain of anti-TIGIT monoclonal antibodies, of which various isotypes are currently under intense clinical investigation.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Células Mieloides/efeitos dos fármacos , Receptores de IgG/metabolismo , Receptores Imunológicos/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Granzimas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral
6.
Brain Res ; 1737: 146814, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234514

RESUMO

Analgesic properties of orthosteric agonists of the muscarinic M4 receptor subtype have been documented in literature reports, with evidence from pharmacological and in vivo receptor knock out (KO) studies. Constitutive M4 receptor KO mice demonstrated an increased response in the formalin pain model, supporting this hypothesis. Two novel positive allosteric modulators (PAM) of the M4 receptor, Compounds 1 and 2, were characterized in rodent models of acute nociception. Results indicated decreased time spent on nociceptive behaviors in the mouse formalin model, and efficacy in the mouse tail flick assay. The analgesic-like effects of Compounds 1 and 2 were shown to be on target, as the compounds lacked any activity in constitutive M4 KO mice, while retaining activity in wild type control littermates. The analgesic-like effects of Compounds 1 and 2 were significantly diminished in KO mice that have selective deletion of the M4 receptor in neurons that co-express the dopaminergic D1 receptor subtype, suggesting a centrally-mediated effect on nociception. The opioid antagonist naloxone did not diminish the effect of Compound 1, indicating the effects of Compound 1 are not secondarily linked to opioid pathways. Compound 1 was evaluated in the rat, where it demonstrated analgesic-like effects in tail flick and a subpopulation of spinal nociceptive sensitive neurons, suggesting some involvement of spinal mechanisms of nociceptive modulation. These studies indicate that M4 PAMs may be a tractable target for pain management assuming an appropriate safety profile, and it appears likely that both spinal and supraspinal pathways may mediate the antinociceptive-like effects.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Receptor Muscarínico M4/agonistas , Regulação Alostérica/fisiologia , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Colinérgicos/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Entorpecentes/farmacologia , Nociceptividade/fisiologia , Dor/metabolismo , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M4/efeitos dos fármacos , Receptor Muscarínico M4/metabolismo
7.
Sci Rep ; 9(1): 19877, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882662

RESUMO

BACE1 is the first enzyme involved in APP processing, thus it is a strong therapeutic target candidate for Alzheimer's disease. The observation of deleterious phenotypes in BACE1 Knock-out (KO) mouse models (germline and conditional) raised some concerns on the safety and tolerability of BACE1 inhibition. Here, we have employed a tamoxifen inducible BACE1 conditional Knock-out (cKO) mouse model to achieve a controlled partial depletion of BACE1 in adult mice. Biochemical and behavioural characterization was performed at two time points: 4-5 months (young mice) and 12-13 months (aged mice). A ~50% to ~70% BACE1 protein reduction in hippocampus and cortex, respectively, induced a significant reduction of BACE1 substrates processing and decrease of Aßx-40 levels at both ages. Hippocampal axonal guidance and peripheral nerve myelination were not affected. Aged mice displayed a CA1 long-term potentiation (LTP) deficit that was not associated with memory impairment. Our findings indicate that numerous phenotypes observed in germline BACE1 KO reflect a fundamental role of BACE1 during development while other phenotypes, observed in adult cKO, may be absent when partially rather than completely deleting BACE1. However, we demonstrated that partial depletion of BACE1 still induces CA1 LTP impairment, supporting a role of BACE1 in synaptic plasticity in adulthood.


Assuntos
Secretases da Proteína Precursora do Amiloide/deficiência , Ácido Aspártico Endopeptidases/deficiência , Orientação de Axônios/genética , Região CA1 Hipocampal , Córtex Cerebral , Deleção de Genes , Plasticidade Neuronal/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Região CA1 Hipocampal/enzimologia , Região CA1 Hipocampal/patologia , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Camundongos , Camundongos Knockout
8.
Am J Physiol Endocrinol Metab ; 315(3): E386-E393, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870677

RESUMO

Fructose consumption in humans and animals has been linked to enhanced de novo lipogenesis, dyslipidemia, and insulin resistance. Hereditary deficiency of ketohexokinase (KHK), the first enzymatic step in fructose metabolism, leads to essential fructosuria in humans, characterized by elevated levels of blood and urinary fructose following fructose ingestion but is otherwise clinically benign. To address whether KHK deficiency is associated with altered glucose and lipid metabolism, a Khk knockout (KO) mouse line was generated and characterized. NMR spectroscopic analysis of plasma following ingestion of [6-13C] fructose revealed striking differences in biomarkers of fructose metabolism. Significantly elevated urine and plasma 13C-fructose levels were observed in Khk KO vs. wild-type (WT) control mice, as was reduced conversion of 13C-fructose into plasma 13C-glucose and 13C-lactate. In addition, the observation of significant levels of fructose-6-phosphate in skeletal muscle tissue of Khk KO, but not WT, mice suggests a potential mechanism, whereby fructose is metabolized via muscle hexokinase in the absence of KHK. Khk KO mice on a standard chow diet displayed no metabolic abnormalities with respect to ambient glucose, glucose tolerance, body weight, food intake, and circulating trigylcerides, ß-hydroxybutyrate, and lactate. When placed on a high-fat and high-fructose (HF/HFruc) diet, Khk KO mice had markedly reduced liver weight, triglyceride levels, and insulin levels. Together, these results suggest that Khk KO mice may serve as a good model for essential fructosuria in humans and that inhibition of KHK offers the potential to protect from diet-induced hepatic steatosis and insulin resistance.


Assuntos
Dieta , Frutoquinases/deficiência , Erros Inatos do Metabolismo da Frutose/genética , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/genética , Dieta Hiperlipídica , Ingestão de Alimentos/genética , Frutoquinases/genética , Frutoquinases/metabolismo , Erros Inatos do Metabolismo da Frutose/metabolismo , Frutosefosfatos/sangue , Intolerância à Glucose/genética , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Camundongos Knockout
9.
Mol Neurodegener ; 12(1): 39, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28521765

RESUMO

BACKGROUND: Hyperphosphorylation of microtubule-associated protein tau is a distinct feature of neurofibrillary tangles (NFTs) that are the hallmark of neurodegenerative tauopathies. O-GlcNAcylation is a lesser known post-translational modification of tau that involves the addition of N-acetylglucosamine onto serine and threonine residues. Inhibition of O-GlcNAcase (OGA), the enzyme responsible for the removal of O-GlcNAc modification, has been shown to reduce tau pathology in several transgenic models. Clarifying the underlying mechanism by which OGA inhibition leads to the reduction of pathological tau and identifying translatable measures to guide human dosing and efficacy determination would significantly facilitate the clinical development of OGA inhibitors for the treatment of tauopathies. METHODS: Genetic and pharmacological approaches are used to evaluate the pharmacodynamic response of OGA inhibition. A panel of quantitative biochemical assays is established to assess the effect of OGA inhibition on pathological tau reduction. A "click" chemistry labeling method is developed for the detection of O-GlcNAcylated tau. RESULTS: Substantial (>80%) OGA inhibition is required to observe a measurable increase in O-GlcNAcylated proteins in the brain. Sustained and substantial OGA inhibition via chronic treatment with Thiamet G leads to a significant reduction of aggregated tau and several phosphorylated tau species in the insoluble fraction of rTg4510 mouse brain and total tau in cerebrospinal fluid (CSF). O-GlcNAcylated tau is elevated by Thiamet G treatment and is found primarily in the soluble 55 kD tau species, but not in the insoluble 64 kD tau species thought as the pathological entity. CONCLUSION: The present study demonstrates that chronic inhibition of OGA reduces pathological tau in the brain and total tau in the CSF of rTg4510 mice, most likely by directly increasing O-GlcNAcylation of tau and thereby maintaining tau in the soluble, non-toxic form by reducing tau aggregation and the accompanying panoply of deleterious post-translational modifications. These results clarify some conflicting observations regarding the effects and mechanism of OGA inhibition on tau pathology, provide pharmacodynamic tools to guide human dosing and identify CSF total tau as a potential translational biomarker. Therefore, this study provides additional support to develop OGA inhibitors as a treatment for Alzheimer's disease and other neurodegenerative tauopathies.


Assuntos
Tauopatias/metabolismo , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Proteínas tau/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Piranos/farmacologia , Tiazóis/farmacologia
10.
Neuropharmacology ; 82: 161-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23291536

RESUMO

Previous work has suggested that activation of mGlu5 receptor augments NMDA receptor function and thereby may constitute a rational approach addressing glutamate hypofunction in schizophrenia and a target for novel antipsychotic drug development. Here, we report the in vitro activity, in vivo efficacy and safety profile of 5PAM523 (4-Fluorophenyl){(2R,5S)-5-[5-(5-fluoropyridin-2-yl)-1,2,4-oxadiazol-3-yl]-2-methylpiperidin-1-yl}methanone), a structurally novel positive allosteric modulator selective of mGlu5. In cells expressing human mGlu5 receptor, 5PAM523 potentiated threshold responses to glutamate in fluorometric calcium assays, but does not have any intrinsic agonist activity. 5PAM523 acts as an allosteric modulator as suggested by the binding studies showing that 5PAM523 did not displace the binding of the orthosteric ligand quisqualic acid, but did partially compete with the negative allosteric modulator, MPyEP. In vivo, 5PAM523 reversed amphetamine-induced locomotor activity in rats. Therefore, both the in vitro and in vivo data demonstrate that 5PAM523 acts as a selective mGlu5 PAM and exhibits anti-psychotic like activity. To study the potential for adverse effects and particularly neurotoxicity, brain histopathological exams were performed in rats treated for 4 days with 5PAM523 or vehicle. The brain exam revealed moderate to severe neuronal necrosis in the rats treated with the doses of 30 and 50 mg/kg, particularly in the auditory cortex and hippocampus. To investigate whether this neurotoxicity is mechanism specific to 5PAM523, similar safety studies were carried out with three other structurally distinct selective mGlu5 PAMs. Results revealed a comparable pattern of neuronal cell death. Finally, 5PAM523 was tested in mGlu5 knock-out (KO) and wild type (WT) mice. mGlu5 WT mice treated with 5PAM523 for 4 days at 100 mg/kg presented significant neuronal death in the auditory cortex and hippocampus. Conversely, mGlu5 KO mice did not show any neuronal loss by histopathology, suggesting that enhancement of mGlu5 function is responsible for the toxicity of 5PAM523. This study reveals for the first time that augmentation of mGlu5 function with selective allosteric modulators results in neurotoxicity.


Assuntos
Antipsicóticos/toxicidade , Benzamidas/toxicidade , Encéfalo/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Fármacos Atuantes sobre Aminoácidos Excitatórios/toxicidade , Oxidiazóis/toxicidade , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica , Animais , Antipsicóticos/química , Antipsicóticos/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Encéfalo/patologia , Encéfalo/fisiopatologia , Células CHO , Morte Celular/fisiologia , Células Cultivadas , Cricetulus , Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacocinética , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Necrose/patologia , Necrose/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Oxidiazóis/química , Oxidiazóis/farmacocinética , Ratos Sprague-Dawley , Ratos Wistar , Receptor de Glutamato Metabotrópico 5/genética
11.
Brain Res ; 1416: 69-79, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21885038

RESUMO

Modulation of TASK-3 (Kcnk9) potassium channels affect neurotransmitter release in thalamocortical centers and other sleep-related nuclei having the capacity to regulate arousal cycles and REM sleep changes associated with mood disorders and antidepressant action. Circumstantial evidence from this and previous studies suggest the potential for TASK-3 to be a novel antidepressant therapeutic target; TASK-3 knock-out mice display augmented circadian amplitude and exhibit sleep architecture characterized by suppressed REM activity. Detailed analysis of locomotor activity indicates that the amplitudes of activity bout duration and bout number are augmented in TASK-3 mutants well beyond that seen in wildtypes, findings substantiated by amplitude increases in body temperature and EEG recordings of sleep stage bouts. Polysomnographic analysis of TASK-3 mutants reveals increases in nocturnal active wake and suppressed REM sleep time while increased slow wave sleep typifies the inactive phase, findings that have implications for the cognitive impact of reduced TASK-3 activity. In direct measures of their resistance to despair behavior, TASK-3 knock-outs displayed significant decreases in immobility relative to wildtype controls in both tail suspension and forced swim tests. Treatment of wildtype animals with the antidepressant Fluoxetine markedly reduced REM sleep, while leaving active wake and slow wave sleep relatively intact. Remarkably, these effects were absent in TASK-3 mutants indicating that TASK-3 is either directly involved in the mechanism of this drug's action, or participates in parallel pathways that achieve the same effect. Together, these results support the TASK-3 channel to act as a therapeutic target for antidepressant action.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Nível de Alerta/fisiologia , Ritmo Circadiano/fisiologia , Fluoxetina/farmacologia , Canais de Potássio/metabolismo , Sono REM/fisiologia , Animais , Comportamento Animal/fisiologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , Análise por Pareamento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Fenótipo , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética
12.
PLoS One ; 6(7): e21499, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747937

RESUMO

Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.


Assuntos
Axônios/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regeneração , Sulfatos/metabolismo , Animais , Comportamento Animal/fisiologia , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Força da Mão/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/lesões , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Substância Negra/citologia , Substância Negra/metabolismo , Substância Negra/fisiologia , Sulfotransferases/deficiência , Sulfotransferases/genética , Regulação para Cima , Carboidrato Sulfotransferases
13.
Mol Brain ; 3(1): 21, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20630068

RESUMO

Synaptic transmission and long-term potentiation (LTP) in the CA1 region of hippocampal slices have been studied during ageing of a double transgenic mouse strain relevant to early-onset familial Alzheimer's disease (AD). This strain, which over-expresses both the 695 amino acid isoform of human amyloid precursor protein (APP) with K670N and M671L mutations and presenilin 1 with the A246E mutation, has accelerated amyloidosis and plaque formation. There was a decrease in synaptic transmission in both wildtype and transgenic mice between 2 and 9 months of age. However, preparing slices from 14 month old animals in kynurenic acid (1 mM) counteracted this age-related deficit. Basal transmission and paired-pulse facilitation was similar between the two groups at all ages (2, 6, 9 and 14 months) tested. Similarly, at all ages LTP, induced either by theta burst stimulation or by multiple tetani, was normal. These data show that a prolonged, substantially elevated level of Abeta are not sufficient to cause deficits in the induction or expression of LTP in the CA1 hippocampal region.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas Mutantes/metabolismo , Presenilina-1/metabolismo , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Região CA1 Hipocampal/fisiopatologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Transmissão Sináptica/fisiologia , Tetania/fisiopatologia
14.
Proc Natl Acad Sci U S A ; 107(5): 2289-94, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133874

RESUMO

Because GABA(A) receptors containing alpha2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with alpha2 gene deletion showed reduced synaptic GABA(A) receptor-mediated responses. Behaviorally, the deletion abolished cocaine's ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of alpha2-GABA(A) receptors (alpha2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In alpha2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of alpha2-GABA(A) receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/farmacologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia , Adulto , Animais , Azidas/farmacologia , Benzodiazepinas/farmacologia , Sítios de Ligação/genética , Estudos de Casos e Controles , Transtornos Relacionados ao Uso de Cocaína/genética , Condicionamento Psicológico , Dopamina/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Receptores de GABA-A/deficiência , Recompensa , Adulto Jovem
15.
J Physiol ; 586(4): 989-1004, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18079158

RESUMO

The subunit composition of GABA(A) receptors influences their biophysical and pharmacological properties, dictates neuronal location and the interaction with associated proteins, and markedly influences the impact of intracellular biochemistry. The focus has been on alpha and gamma subunits, with little attention given to beta subunits. Dentate gyrus granule cells (DGGCs) express all three beta subunit isoforms and exhibit both synaptic and extrasynaptic receptors that mediate 'phasic' and 'tonic' transmission, respectively. To investigate the subcellular distribution of the beta subunits we have utilized the patch-clamp technique to compare the properties of 'tonic' and miniature inhibitory postsynaptic currents (mIPSCs) recorded from DGGCs of hippocampal slices of P20-26 wild-type (WT), beta(2)(-/-), beta(2N265S) (etomidate-insensitive), alpha(1)(-/-) and delta(-/-) mice. Deletion of either the beta(2) or the delta subunit produced a significant reduction of the tonic current and attenuated the increase of this current induced by the delta subunit-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). By contrast, mIPSCs were not influenced by deletion of these genes. Enhancement of the tonic current by the beta(2/3) subunit-selective agent etomidate was significantly reduced for DGGCs derived from beta(2N265S) mice, whereas this manipulation had no effect on the prolongation of mIPSCs produced by this anaesthetic. Collectively, these observations, together with previous studies on alpha(4)(-/-) mice, identify a population of extrasynaptic alpha(4)beta(2)delta receptors, whereas synaptic GABA(A) receptors appear to primarily incorporate the beta(3) subunit. A component of the tonic current is diazepam sensitive and is mediated by extrasynaptic receptors incorporating alpha(5) and gamma(2) subunits. Deletion of the beta(2) subunit had no effect on the diazepam-induced current and therefore these extrasynaptic receptors do not contain this subunit. The unambiguous identification of these distinct pools of synaptic and extrasynaptic GABA(A) receptors should aid our understanding of how they act in harmony, to regulate hippocampal signalling in health and disease.


Assuntos
Giro Denteado/metabolismo , Neurônios/metabolismo , Receptores de GABA/metabolismo , Sinapses/metabolismo , Animais , Giro Denteado/citologia , Diazepam/farmacologia , Feminino , Agonistas GABAérgicos/farmacologia , Moduladores GABAérgicos/farmacologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Isoxazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de GABA/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
16.
J Physiol ; 586(4): 965-87, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18063661

RESUMO

Thalamic ventrobasal (VB) relay neurones express multiple GABA(A) receptor subtypes mediating phasic and tonic inhibition. During postnatal development, marked changes in subunit expression occur, presumably reflecting changes in functional properties of neuronal networks. The aims of this study were to characterize the properties of synaptic and extrasynaptic GABA(A) receptors of developing VB neurones and investigate the role of the alpha(1) subunit during maturation of GABA-ergic transmission, using electrophysiology and immunohistochemistry in wild type (WT) and alpha(1)(0/0) mice and mice engineered to express diazepam-insensitive receptors (alpha(1H101R), alpha(2H101R)). In immature brain, rapid (P8/9-P10/11) developmental change to mIPSC kinetics and increased expression of extrasynaptic receptors (P8-27) formed by the alpha(4) and delta subunit occurred independently of the alpha(1) subunit. Subsequently (> or = P15), synaptic alpha(2) subunit/gephyrin clusters of WT VB neurones were replaced by those containing the alpha(1) subunit. Surprisingly, in alpha(1)(0/0) VB neurones the frequency of mIPSCs decreased between P12 and P27, because the alpha(2) subunit also disappeared from these cells. The loss of synaptic GABA(A) receptors led to a delayed disruption of gephyrin clusters. Despite these alterations, GABA-ergic terminals were preserved, perhaps maintaining tonic inhibition. These results demonstrate that maturation of synaptic and extrasynaptic GABA(A) receptors in VB follows a developmental programme independent of the alpha(1) subunit. Changes to synaptic GABA(A) receptor function and the increased expression of extrasynaptic GABA(A) receptors represent two distinct mechanisms for fine-tuning GABA-ergic control of thalamic relay neurone activity during development.


Assuntos
Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo , Animais , Proteínas de Transporte/metabolismo , Eletrofisiologia , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Subunidades Proteicas/metabolismo , Transmissão Sináptica/fisiologia
17.
Biopharm Drug Dispos ; 28(6): 275-82, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17570124

RESUMO

The in vivo occupancy of brain benzodiazepine binding sites by compounds A and B was measured using a [(3)H]Ro 15-1788 binding assay and related to plasma and brain drug concentrations. The plasma concentration associated with 50% occupancy was higher for compound A than compound B (73 and 3.7 nM, respectively), however, there was little difference in the brain concentrations required (73 and 63 nM). Both compounds showed a non-linear relationship between plasma and brain concentrations such that above brain concentrations of approximately 100 nM increasing plasma concentrations did not result in a concomitant increase in brain concentrations. This is consistent with brain concentrations being dependent on a saturable compartment which was postulated to be the benzodiazepine binding site-containing GABA(A) receptors. This hypothesis was tested in alpha1H101R mice, in which the alpha1 subunit of the GABA(A) receptor is rendered insensitive to benzodiazepine binding resulting in an approximate 50% reduction in the total benzodiazepine-containing GABA(A) receptor population. It was shown that the Occ(50) brain concentrations in the alpha1H101R animals was lower (17 nM) than in wild type mice (63 nM), as was the plateau concentration in the brain (105 and 195 nM, respectively). These data suggest measured concentrations of compounds A and B in brain tissue are dependent on receptor expression with a minimal contribution from unbound and non-specifically bound compound.


Assuntos
Benzodiazepinas/metabolismo , Encéfalo/metabolismo , Ligantes , Receptores de GABA-A/metabolismo , Administração Oral , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/metabolismo , Ansiolíticos/farmacocinética , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacocinética , Benzodiazepinas/administração & dosagem , Benzodiazepinas/farmacocinética , Benzodiazepinonas/administração & dosagem , Benzodiazepinonas/metabolismo , Benzodiazepinonas/farmacocinética , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Química Encefálica , Relação Dose-Resposta a Droga , Flumazenil/administração & dosagem , Flumazenil/metabolismo , Flumazenil/farmacocinética , Flunitrazepam/administração & dosagem , Flunitrazepam/metabolismo , Flunitrazepam/farmacocinética , Moduladores GABAérgicos/administração & dosagem , Moduladores GABAérgicos/metabolismo , Moduladores GABAérgicos/farmacocinética , Agonistas de Receptores de GABA-A , Injeções Intravenosas , Masculino , Camundongos , Camundongos Mutantes , Piridazinas/administração & dosagem , Piridazinas/metabolismo , Piridazinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Distribuição Tecidual , Triazinas/administração & dosagem , Triazinas/metabolismo , Triazinas/farmacocinética
18.
Eur J Neurosci ; 25(6): 1757-66, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17432963

RESUMO

In the mammalian central nervous system, transporter-mediated reuptake may be critical for terminating the neurotransmitter action of D-serine at the strychnine insensitive glycine site of the NMDA receptor. The Na(+) independent amino acid transporter alanine-serine-cysteine transporter 1 (Asc-1) has been proposed to account for synaptosomal d-serine uptake by virtue of its high affinity for D-serine and widespread neuronal expression throughout the brain. Here, we sought to validate the contribution of Asc-1 to D-serine uptake in mouse brain synaptosomes using Asc-1 gene knockout (KO) mice. Total [(3)H]D-serine uptake in forebrain and cerebellar synaptosomes from Asc-1 knockout mice was reduced to 34 +/- 5% and 22 +/- 3% of that observed in wildtype (WT) mice, respectively. When the Na(+) dependent transport components were removed by omission of Na(+) ions in the assay buffer, D-serine uptake in knockout mice was reduced to 8 +/- 1% and 3 +/- 1% of that measured in wildtype mice in forebrain and cerebellum, respectively, suggesting Asc-1 plays a major role in the Na(+) independent transport of D-serine. Potency determination of D-serine uptake showed that Asc-1 mediated rapid high affinity Na(+) independent uptake with an IC(50) of 19 +/- 1 microm. The remaining uptake was mediated predominantly via a low affinity Na(+) dependent transporter with an IC(50) of 670 +/- 300 microm that we propose is the glial alanine-serine-cysteine transporter 2 (ASCT2) transporter. The results presented reveal that Asc-1 is the only high affinity D-serine transporter in the mouse CNS and is the predominant mechanism for D-serine reuptake.


Assuntos
Sistema y+ de Transporte de Aminoácidos/deficiência , Sistema y+ de Transporte de Aminoácidos/fisiologia , Sistema Nervoso Central/metabolismo , Serina/metabolismo , Sistemas de Transporte de Aminoácidos/deficiência , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Células Cultivadas , Sistema Nervoso Central/citologia , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serina/farmacocinética , Sódio/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
19.
J Pharmacol Exp Ther ; 320(2): 552-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17099072

RESUMO

There is a substantial body of evidence indicating that beta-amyloid peptides (Abeta) are critical factors in the onset and development of Alzheimer's disease (AD). One strategy for combating AD is to reduce or eliminate the production of Abeta through inhibition of the gamma-secretase enzyme, which cleaves Abeta from the amyloid precursor protein (APP). We demonstrate here that chronic treatment for 3 months with 3 mg/kg of the potent, orally bioavailable and brain-penetrant gamma-secretase inhibitor N-[cis-4-[(4-chlorophenyl)-sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]-1,1,1-trifluoromethanesulfonamide (MRK-560) attenuates the appearance of amyloid plaques in the Tg2576 mouse. These reductions in plaques were also accompanied by a decrease in the level of reactive gliosis. The morphometric and histological measures agreed with biochemical analysis of Abeta(40) and Abeta(42) in the cortex. Interestingly, the volume of the plaques across treatment groups did not change, indicating that reducing Abeta levels does not significantly alter deposit growth once initiated. Furthermore, we demonstrate that these beneficial effects can be achieved without causing histopathological changes in the ileum, spleen, or thymus as a consequence of blockade of the processing of alternative substrates, such as the Notch family of receptors. This indicates that in vivo a therapeutic window between these substrates seems possible--a key concern in the development of this approach to AD. An understanding of the mechanisms whereby MRK-560 shows differentiation between the APP and Notch proteolytic pathway of gamma-secretase should provide the basis for the next generation of gamma-secretase inhibitors.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Inibidores de Proteases/farmacologia , Sulfonamidas/farmacologia , Sulfonas/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Feminino , Masculino , Camundongos , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo
20.
J Psychopharmacol ; 21(4): 384-91, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17092983

RESUMO

Non-selective benzodiazepines, such as diazepam, interact with equivalent affinity and agonist efficacy at GABA(A) receptors containing either an alpha1, alpha2, alpha3 or alpha5 subunit. However, which of these particular subtypes are responsible for the anticonvulsant effects of diazepam remains uncertain. In the present study, we examined the ability of diazepam to reduce pentylenetetrazoLe (PTZ)-induced and maximal electroshock (MES)-induced seizures in mice containing point mutations in single (alpha1H101R, alpha2H101R or alpha5H105R) or multiple (alpha125H-->R) alpha subunits that render the resulting GABA(A) receptors diazepam-insensitive. Furthermore, the anticonvulsant properties of diazepam, the alpha1- and alpha3-selective compounds zolpidem and TP003, respectively, and the alpha2/alpha3 preferring compound TP13 were studied against PTZ-induced seizures. In the transgenic mice, no single subtype was responsible for the anticonvulsant effects of diazepam in either the PTZ or MES assay and neither the alpha3 nor alpha5 subtypes appeared to confer anticonvulsant activity. Moreover, whereas the alpha1 and alpha2 subtypes played a modest role with respect to the PTZ assay, they had a negligible role in the MES assay. With respect to subtype-selective compounds, zolpidem and TP003 had much reduced anticonvulsant efficacy relative to diazepam in both the PTZ and MES assays whereas TP13 had high anticonvulsant efficacy in the PTZ but not the MES assay. Taken together, these data not only indicate a role for alpha2-containing GABA(A) receptors in mediating PTZ and MES anticonvulsant activity but also suggest that efficacy at more than one subtype is required and that these subtypes act synergistically.


Assuntos
Anticonvulsivantes/farmacologia , Benzodiazepinas/farmacologia , Receptores de GABA-A/fisiologia , Convulsões/prevenção & controle , Animais , Sítios de Ligação , Convulsivantes , Diazepam/farmacologia , Eletrochoque , Agonistas de Receptores de GABA-A , Ligantes , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Pentilenotetrazol , Mutação Puntual , Subunidades Proteicas/agonistas , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Piridinas/farmacologia , Receptores de GABA-A/genética , Convulsões/etiologia , Zolpidem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA