Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 108, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886761

RESUMO

BACKGROUND: Despite serious health and social consequences, effective intervention strategies for habitual alcohol binge drinking are lacking. The development of novel therapeutic and preventative approaches is highly desirable. Accumulating evidence in the past several years has established associations between the gut microbiome and microbial metabolites with drinking behavior, but druggable targets and their underlying mechanism of action are understudied. RESULTS: Here, using a drink-in-the-dark mouse model, we identified a microbiome metabolite-based novel treatment (sodium valerate) that can reduce excessive alcohol drinking. Sodium valerate is a sodium salt of valeric acid short-chain fatty acid with a similar structure as γ-aminobutyric acid (GABA). Ten days of oral sodium valerate supplementation attenuates excessive alcohol drinking by 40%, reduces blood ethanol concentration by 53%, and improves anxiety-like or approach-avoidance behavior in male mice, without affecting overall food and water intake. Mechanistically, sodium valerate supplementation increases GABA levels across stool, blood, and amygdala. It also significantly increases H4 acetylation in the amygdala of mice. Transcriptomics analysis of the amygdala revealed that sodium valerate supplementation led to changes in gene expression associated with functional pathways including potassium voltage-gated channels, inflammation, glutamate degradation, L-DOPA degradation, and psychological behaviors. 16S microbiome profiling showed that sodium valerate supplementation shifts the gut microbiome composition and decreases microbiome-derived neuroactive compounds through GABA degradation in the gut microbiome. CONCLUSION: Our findings suggest that sodium valerate holds promise as an innovative therapeutic avenue for the reduction of habitual binge drinking, potentially through multifaceted mechanisms. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Ácido gama-Aminobutírico , Animais , Masculino , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Ácidos Graxos Voláteis/metabolismo , Consumo de Bebidas Alcoólicas , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Etanol , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Consumo Excessivo de Bebidas Alcoólicas , Ácidos Pentanoicos
2.
Res Sq ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961441

RESUMO

Background: Despite serious health and social consequences, effective intervention strategies for habitual alcohol binge drinking are lacking. Development of novel therapeutic and preventative approaches is highly desirable. Accumulating evidence in the past several years has established associations between the gut microbiome and microbial metabolites with drinking behavior, but druggable targets and their underlying mechanism of action are understudied. Results: Here, using a drink-in-the-dark mouse model, we identified a microbiome metabolite-based novel treatment (sodium valerate) that can reduce excessive alcohol drinking. Sodium valerate is a sodium salt of valeric acidshort-chain-fatty-acid with similar structure as γ-aminobutyric acid (GABA). Ten days of oral sodium valerate supplementation attenuates excessive alcohol drinking by 40%, reduces blood ethanol concentration by 53%, and improves anxiety-like or approach-avoidance behavior in male mice, without affecting overall food and water intake. Mechanistically, sodium valerate supplementation increases GABA levels across stool, blood, and amygdala. It also significantly increases H4 acetylation in the amygdala of mice. Transcriptomics analysis of the amygdala revealed that sodium valerate supplementation led to changes in gene expression associated with functional pathways including potassium voltage-gated channels, inflammation, glutamate degradation, L-DOPA degradation, and psychological behaviors. 16S microbiome profiling showed that sodium valerate supplementation shifts the gut microbiome composition and decreases microbiome-derived neuroactive compounds through GABA degradation in the gut microbiome. Conclusion: Our findings suggest that the sodium valerate holds promise as an innovative therapeutic avenue for the reduction of habitual binge drinking, potentially through multifaceted mechanisms.

3.
Microbiol Resour Announc ; 12(5): e0008923, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37042767

RESUMO

Lactobacillus johnsonii strain MT4, isolated from the oral cavity of C57BL/6 mice, elicits antimicrobial activity against disease-associated microorganisms. Short-read sequencing of the whole genome revealed a single genome of 1,883,026 bp, with a GC content of 34.4%, and no plasmids.

4.
Front Cell Infect Microbiol ; 12: 920735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959362

RESUMO

Although gut microbiome dysbiosis has been illustrated in celiac disease (CD), there are disagreements about what constitutes these microbial signatures and the timeline by which they precede diagnosis is largely unknown. The study of high-genetic-risk patients or those already with CD limits our knowledge of dysbiosis that may occur early in life in a generalized population. To explore early gut microbial imbalances correlated with future celiac disease (fCD), we analyzed the stool of 1478 infants aged one year, 26 of whom later acquired CD, with a mean age of diagnosis of 10.96 ± 5.6 years. With a novel iterative control-matching algorithm using the prospective general population cohort, All Babies In Southeast Sweden, we found nine core microbes with prevalence differences and seven differentially abundant bacteria between fCD infants and controls. The differences were validated using 100 separate, iterative permutations of matched controls, which suggests the bacterial signatures are significant in fCD even when accounting for the inherent variability in a general population. This work is the first to our knowledge to demonstrate that gut microbial differences in prevalence and abundance exist in infants aged one year up to 19 years before a diagnosis of CD in a general population.


Assuntos
Doença Celíaca , Microbioma Gastrointestinal , Adolescente , Bactérias/genética , Doença Celíaca/genética , Criança , Pré-Escolar , Disbiose , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Lactente , Estudos Prospectivos
5.
Microorganisms ; 10(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35336091

RESUMO

With the current advancements in DNA sequencing technology, the limiting factor in long-read metagenomic assemblies is now the quantity and quality of input DNA. Although these requirements can be met through the use of axenic bacterial cultures or large amounts of biological material, insect systems that contain unculturable bacteria or that contain a low amount of available DNA cannot fully utilize the benefits of third-generation sequencing. The citrus greening disease insect vector Diaphorina citri is an example that exhibits both of these limitations. Although endosymbiont genomes have mostly been closed after the short-read sequencing of amplified template DNA, creating de novo long-read genomes from the unamplified DNA of an insect population may benefit communities using bioinformatics to study insect pathosystems. Here all four genomes of the infected D. citri microbiome were sequenced to closure using unamplified template DNA and two long-read sequencing technologies. Avoiding amplification bias and using long reads to assemble the bacterial genomes allowed for the circularization of the Wolbachia endosymbiont of Diaphorina citri for the first time and paralleled the annotation context of all four reference genomes without utilizing a traditional hybrid assembly. The strategies detailed here are suitable for the sequencing of other insect systems for which the input DNA, time, and cost are an issue.

6.
Front Microbiol ; 13: 853762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330775

RESUMO

Lactobacillus johnsonii is a probiotic bacterial species with broad antimicrobial properties; however, its antimicrobial activities against the pathobiont Candida albicans are underexplored. The aim of this study was to study the interactions of L. johnsonii with C. albicans and explore mechanisms of bacterial anti-fungal activities based on bacterial genomic characterization coupled with experimental data. We isolated an L. johnsonii strain (MT4) from the oral cavity of mice and characterized its effect on C. albicans growth in the planktonic and biofilm states. We also identified key genetic and phenotypic traits that may be associated with a growth inhibitory activity exhibited against C. albicans. We found that L. johnsonii MT4 displays pH-dependent and pH-independent antagonistic interactions against C. albicans, resulting in inhibition of C. albicans planktonic growth and biofilm formation. This antagonism is influenced by nutrient availability and the production of soluble metabolites with anticandidal activity.

7.
Front Neurosci ; 15: 725500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531718

RESUMO

Substance use disorders (SUDs) remain a significant public health challenge, affecting tens of millions of individuals worldwide each year. Often comorbid with other psychiatric disorders, SUD can be poly-drug and involve several different substances including cocaine, opiates, nicotine, and alcohol. SUD has a strong genetic component. Much of SUD research has focused on the neurologic and genetic facets of consumption behavior. There is now interest in the role of the gut microbiome in the pathogenesis of SUD. In this review, we summarize current animal and clinical evidence that the gut microbiome is involved in SUD, then address the underlying mechanisms by which the gut microbiome interacts with SUD through metabolomic, immune, neurological, and epigenetic mechanisms. Lastly, we discuss methods using various inbred and outbred mice models to gain an integrative understanding of the microbiome and host genetic controls in SUD.

8.
Appl Environ Microbiol ; 87(14): e0052421, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33990300

RESUMO

Caldicellulosiruptor species are hyperthermophilic, Gram-positive anaerobes and the most thermophilic cellulolytic bacteria so far described. They have been engineered to convert switchgrass to ethanol without pretreatment and represent a promising platform for the production of fuels, chemicals, and materials from plant biomass. Xylooligomers, such as xylobiose and xylotriose, that result from the breakdown of plant biomass more strongly inhibit cellulase activity than do glucose or cellobiose. High concentrations of xylobiose and xylotriose are present in C. bescii fermentations after 90 h of incubation, and removal or breakdown of these types of xylooligomers is crucial to achieving high conversion of plant biomass to product. In previous studies, the addition of exogenous ß-d-xylosidase substantially improved the performance of glucanases and xylanases in vitro. ß-d-Xylosidases are, in fact, essential enzymes in commercial preparations for efficient deconstruction of plant biomass. In addition, the combination of xylanase and ß-d-xylosidase is known to exhibit synergistic action on xylan degradation. In spite of its ability to grow efficiently on xylan substrates, no extracellular ß-d-xylosidase was identified in the C. bescii genome. Here, we report that the coexpression of a thermal stable ß-d-xylosidase from Thermotoga maritima and a xylanase from Acidothermus cellulolyticus in a C. bescii strain containing the A. cellulolyticus E1 endoglucanase significantly increased the activity of the exoproteome as well as growth on xylan substrates. The combination of these enzymes also resulted in increased growth on crystalline cellulose in the presence of exogenous xylan. IMPORTANCECaldicellulosiruptor species are bacteria that grow at extremely high temperature, more than 75°C, and are the most thermophilic bacteria so far described that are capable of growth on plant biomass. This native ability allows the use of unpretreated biomass as a growth substrate, eliminating the prohibitive cost of preprocessing/pretreatment of the biomass. They only grow under strictly anaerobic conditions, and the combination of high temperature and the lack of oxygen reduces the cost of fermentation and contamination by other microbes. They have been genetically engineered to convert switchgrass to ethanol without pretreatment and represent a promising platform for the production of fuels, chemicals, and materials from plant biomass. In this study, we introduced genes from other cellulolytic bacteria and identified a combination of enzymes that improves growth on plant biomass. An important feature of this study is that it measures growth, validating predictions made from adding enzyme mixtures to biomass.


Assuntos
Actinobacteria/enzimologia , Caldicellulosiruptor/metabolismo , Proteoma/metabolismo , Thermotoga maritima/enzimologia , Xilanos/metabolismo , Xilosidases/metabolismo , Actinobacteria/genética , Celobiose/metabolismo , Escherichia coli/genética , Thermotoga maritima/genética , Xilosidases/genética
9.
Sci Rep ; 11(1): 1943, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479274

RESUMO

Antibiotic use in neonates can have detrimental effects on the developing gut microbiome, increasing the risk of morbidity. A majority of preterm neonates receive antibiotics after birth without clear evidence to guide this practice. Here microbiome, metabolomic, and immune marker results from the routine early antibiotic use in symptomatic preterm Neonates (REASON) study are presented. The REASON study is the first trial to randomize symptomatic preterm neonates to receive or not receive antibiotics in the first 48 h after birth. Using 16S rRNA sequencing of stool samples collected longitudinally for 91 neonates, the effect of such antibiotic use on microbiome diversity is assessed. The results illustrate that type of nutrition shapes the early infant gut microbiome. By integrating data for the gut microbiome, stool metabolites, stool immune markers, and inferred metabolic pathways, an association was discovered between Veillonella and the neurotransmitter gamma-aminobutyric acid (GABA). These results suggest early antibiotic use may impact the gut-brain axis with the potential for consequences in early life development, a finding that needs to be validated in a larger cohort.Trial Registration This project is registered at clinicaltrials.gov under the name "Antibiotic 'Dysbiosis' in Preterm Infants" with trial number NCT02784821.


Assuntos
Antibacterianos/administração & dosagem , Disbiose/tratamento farmacológico , Inflamação/tratamento farmacológico , Metaboloma/genética , RNA Ribossômico 16S/genética , Disbiose/genética , Disbiose/microbiologia , Disbiose/patologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Recém-Nascido Prematuro , Inflamação/genética , Inflamação/microbiologia , Inflamação/patologia , Redes e Vias Metabólicas/genética , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Microbiota/genética , Gravidez , Veillonella/genética , Veillonella/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Mol Psychiatry ; 26(8): 4277-4287, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31988436

RESUMO

Single nucleotide exact amplicon sequence variants (ASV) of the human gut microbiome were used to evaluate if individuals with a depression phenotype (DEPR) could be identified from healthy reference subjects (NODEP). Microbial DNA in stool samples obtained from 40 subjects were characterized using high throughput microbiome sequence data processed via DADA2 error correction combined with PIME machine-learning de-noising and taxa binning/parsing of prevalent ASVs at the single nucleotide level of resolution. Application of ALDEx2 differential abundance analysis with assessed effect sizes and stringent PICRUSt2 predicted metabolic pathways. This multivariate machine-learning approach significantly differentiated DEPR (n = 20) vs. NODEP (n = 20) (PERMANOVA P < 0.001) based on microbiome taxa clustering and neurocircuit-relevant metabolic pathway network analysis for GABA, butyrate, glutamate, monoamines, monosaturated fatty acids, and inflammasome components. Gut microbiome dysbiosis using ASV prevalence data may offer the diagnostic potential of using human metaorganism biomarkers to identify individuals with a depression phenotype.


Assuntos
Depressão , Microbioma Gastrointestinal , Aprendizado de Máquina , Depressão/genética , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nucleotídeos , Fenótipo , RNA Ribossômico 16S/genética
11.
J Pediatr ; 229: 294-298.e3, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32979383

RESUMO

We enrolled 98 infants (gestational age <33 weeks) in a pilot randomized trial of antibiotics vs no antibiotics; 55 were randomized (lower maternal infectious risk; symptoms expected for gestation). Adverse events did not differ significantly between the randomization arms. This trial establishes a framework for a larger multicentered trial.


Assuntos
Antibacterianos/uso terapêutico , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus agalactiae , Fatores Etários , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Projetos Piloto
12.
Metabolites ; 10(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823682

RESUMO

Within a randomized prospective pilot study of preterm infants born at less than 33 weeks' gestation, weekly fecal samples from 19 infants were collected and metabolomic analysis was performed. The objective was to evaluate for differences in fecal metabolites in infants exposed to antibiotics vs. not exposed to antibiotics in the first 48 h after birth. Metabolomics analysis was performed on 123 stool samples. Significant differences were seen in the antibiotics vs. no antibiotics groups, including pathways related to vitamin biosynthesis, bile acids, amino acid metabolism, and neurotransmitters. Early antibiotic exposure in preterm infants may alter metabolites in the intestinal tract of preterm infants. Broader multi-omic studies that address mechanisms will guide more prudent antibiotic use in this population.

13.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769195

RESUMO

Caldicellulosiruptor bescii secretes a large number of complementary multifunctional enzymes with unique activities for biomass deconstruction. The most abundant enzymes in the C. bescii secretome are found in a unique gene cluster containing a glycosyl transferase (GT39) and a putative peptidyl prolyl cis-trans isomerase. Deletion of the glycosyl transferase in this cluster resulted in loss of detectable protein glycosylation in C. bescii, and its activity has been shown to be responsible for the glycosylation of the proline-threonine rich linkers found in many of the multifunctional cellulases. The presence of a putative peptidyl prolyl cis-trans isomerase within this gene cluster suggested that it might also play a role in cellulase modification. Here, we identify this gene as a putative prsA prolyl cis-trans isomerase. Deletion of prsA2 leads to the inability of C. bescii to grow on insoluble substrates such as Avicel, the model cellulose substrate, while exhibiting no differences in phenotype with the wild-type strain on soluble substrates. Finally, we provide evidence that the prsA2 gene is likely needed to increase solubility of multifunctional cellulases and that this unique gene cluster was likely acquired by members of the Caldicellulosiruptor genus with a group of genes to optimize the production and activity of multifunctional cellulases.IMPORTANCECaldicellulosiruptor has the ability to digest complex plant biomass without pretreatment and have been engineered to convert biomass, a sustainable, carbon neutral substrate, to fuels. Their strategy for deconstructing plant cell walls relies on an interesting class of cellulases consisting of multiple catalytic modules connected by linker regions and carbohydrate binding modules. The best studied of these enzymes, CelA, has a unique deconstruction mechanism. CelA is located in a cluster of genes that likely allows for optimal expression, secretion, and activity. One of the genes in this cluster is a putative isomerase that modifies the CelA protein. In higher eukaryotes, these isomerases are essential for the proper folding of glycoproteins in the endoplasmic reticulum, but little is known about the role of isomerization in cellulase activity. We show that the stability and activity of CelA is dependent on the activity of this isomerase.


Assuntos
Proteínas de Bactérias/genética , Caldicellulosiruptor/genética , Celulose/metabolismo , Peptidilprolil Isomerase/genética , Proteínas de Bactérias/metabolismo , Caldicellulosiruptor/metabolismo , Deleção de Genes , Glicosilação , Peptidilprolil Isomerase/metabolismo , Especificidade por Substrato
14.
Nat Commun ; 10(1): 3621, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399563

RESUMO

Susceptibility to many human autoimmune diseases is under strong genetic control by class II human leukocyte antigen (HLA) allele combinations. These genes remain by far the greatest risk factors in the development of type 1 diabetes and celiac disease. Despite this, little is known about HLA influences on the composition of the human gut microbiome, a potential source of environmental influence on disease. Here, using a general population cohort from the All Babies in Southeast Sweden study, we report that genetic risk for developing type 1 diabetes autoimmunity is associated with distinct changes in the gut microbiome. Both the core microbiome and beta diversity differ with HLA risk group and genotype. In addition, protective HLA haplotypes are associated with bacterial genera Intestinibacter and Romboutsia. Thus, general population cohorts are valuable in identifying potential environmental triggers or protective factors for autoimmune diseases that may otherwise be masked by strong genetic control.


Assuntos
Doenças Autoimunes/genética , Autoimunidade/genética , Diabetes Mellitus Tipo 1/imunologia , Microbioma Gastrointestinal/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Alelos , Bactérias/classificação , Bactérias/genética , Biodiversidade , Doença Celíaca/genética , Criança , Pré-Escolar , Fezes/microbiologia , Predisposição Genética para Doença/genética , Genótipo , Haplótipos , Humanos , Lactente , RNA Ribossômico 16S/genética , Fatores de Risco , Suécia
15.
Medchemcomm ; 10(11): 1875-1880, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32280435

RESUMO

We describe the inhibition of the starch utilization system (Sus) belonging to various strains of Bacteroides dorei in a non-lethal manner using the small molecule probe, acarbose. Concentrations of acarbose as low as 5 µM significantly impede the growth of B. dorei and increase the doubling time of cultures. The successful inhibition of this species of Bacteroides is relevant to several disease states including type I diabetes mellitus. This method continues to explore a new, potential route to intervene in illnesses associated with aberrant changes in the composition of the human gut microbiota through the strategic manipulation of its constituents.

16.
Biotechnol Biofuels ; 11: 259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258493

RESUMO

Protein glycosylation pathways have been identified in a variety of bacteria and are best understood in pathogens and commensals in which the glycosylation targets are cell surface proteins, such as S layers, pili, and flagella. In contrast, very little is known about the glycosylation of bacterial enzymes, especially those secreted by cellulolytic bacteria. Caldicellulosiruptor bescii secretes several unique synergistic multifunctional biomass-degrading enzymes, notably cellulase A which is largely responsible for this organism's ability to grow on lignocellulosic biomass without the conventional pretreatment. It was recently discovered that extracellular CelA is heavily glycosylated. In this work, we identified an O-glycosyltransferase in the C. bescii chromosome and targeted it for deletion. The resulting mutant was unable to grow on crystalline cellulose and showed no detectable protein glycosylation. Multifunctional biomass-degrading enzymes in this strain were rapidly degraded. With the genetic tools available in C. bescii, this system represents a unique opportunity to study the role of bacterial enzyme glycosylation as well an investigation of the pathway for protein glycosylation in a non-pathogen.

17.
Biotechnol Biofuels ; 11: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434665

RESUMO

BACKGROUND: Thermophilic microorganisms and their enzymes offer several advantages for industrial application over their mesophilic counterparts. For example, a hyperthermophilic anaerobe, Caldicellulosiruptor bescii, was recently isolated from hot springs in Kamchatka, Siberia, and shown to have very high cellulolytic activity. Additionally, it is one of a few microorganisms being considered as viable candidates for consolidated bioprocessing applications. Moreover, C. bescii is capable of deconstructing plant biomass without enzymatic or chemical pretreatment. This ability is accomplished by the production and secretion of free, multi-modular and multi-functional enzymes, one of which, CbCel9A/Cel48A also known as CelA, is able to outperform enzymes found in commercial enzyme preparations. Furthermore, the complete C. bescii exoproteome is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Therefore, understanding the functional diversity of enzymes in the C. bescii exoproteome and how inter-molecular synergy between them confers C. bescii with its high cellulolytic activity is an important endeavor to enable the production of more efficient biomass degrading enzyme formulations and in turn, better cellulolytic industrial microorganisms. RESULTS: To advance the understanding of the C. bescii exoproteome we have expressed, purified, and tested four of the primary enzymes found in the exoproteome and we have found that the combination of three or four of the most highly expressed enzymes exhibit synergistic activity. We also demonstrated that discrete combinations of these enzymes mimic and even  improve upon the activity of the whole C. bescii exoproteome, even though some of the enzymes lack significant activity on their own. CONCLUSIONS: We have demonstrated that it is possible to replicate the cellulolytic activity of the native C. bescii exoproteome utilizing a minimal gene set, and that these minimal gene sets are more active than the whole exoproteome. In the future, this may lead to more simplified and efficient cellulolytic enzyme preparations or yield improvements when these enzymes are expressed in microorganisms engineered for consolidated bioprocessing.

18.
Sci Rep ; 7(1): 9622, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851921

RESUMO

The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systems employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Here, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Firmicutes/enzimologia , Celulase/química , Celulase/genética , Estabilidade Enzimática/efeitos da radiação , Temperatura Alta , Hidrólise , Domínios Proteicos
19.
Sci Rep ; 7(1): 6458, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743956

RESUMO

Herein we describe an association between activation of inflammatory pathways following transient hypoxia and the appearance of the multidrug resistant bacteria Staphylococcus simulans in the fetal brain. Reduction of maternal arterial oxygen tension by 50% over 30 min resulted in a subseiuent significant over-expression of genes associated with immune responses 24 h later in the fetal brain. The activated genes were consistent with stimulation by bacterial lipopolysaccharide; an influx of macrophages and appearance of live bacteria were found in these fetal brains. S. simulans was the predominant bacterial species in fetal brain after hypoxia, but was found in placenta of all animals. Strains of S. simulans from the placenta and fetal brain were equally highly resistant to multiple antibiotics including methicillin and had identical genome sequences. These results suggest that bacteria from the placenta invade the fetal brain after maternal hypoxia.


Assuntos
Encéfalo/microbiologia , Farmacorresistência Bacteriana Múltipla , Hipóxia Fetal/complicações , Placenta/microbiologia , Staphylococcus/patogenicidade , Animais , Encéfalo/embriologia , Encéfalo/patologia , Feminino , Hipóxia Fetal/patologia , Hipóxia Fetal/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Macrófagos/patologia , Microglia/patologia , Gravidez , Ovinos , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA