Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosurg Sci ; 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380199

RESUMO

BACKGROUND: Degenerative disc disease (DDD) is a prevalent disorder that brings great incapacity and morbidity to the world's population. Its pathophysiology is not fully understood. DNA damage can influence this process, but so far, there have been few studies to evaluate this topic and its true importance in DDD, as well as whether there is a relation between degeneration grade and DNA damage. The objective of this study is to evaluate the degree of damage to the DNA and the relation to the severity of DDD and measure its response to this insult compared to live/dead cell parameters and reactive oxygen species activity in human discs. METHODS: An experimental study was performed with 15 patients with grade IV or V Pfirrmann classification who underwent spinal surgery. Five patients were operated on two levels, resulting in 20 samples that were submitted to the comet assay to measure DNA damage. Of these, six samples were submitted to flow cytometry, and apoptosis, necrosis, cell membrane integrity, intracellular esterase activity, reactive oxygen species (ROS), caspase 3 and mitochondrial membrane potential were evaluated. RESULTS: All samples had DNA damage, and the average of index damage (ID) was 78.1 (SD ± 65.11) and frequency damage (FD) was 49.3% (SD ± 26,05%). There was no statistical difference between the Pfirrmann grades and genotoxic damage. Likewise, all samples that underwent flow cytometry showed apoptosis and ROS to many different degrees. CONCLUSIONS: DNA damage occurs in high-grade degeneration of human discs and contributes to activation of the apoptosis pathway and ROS production that can accelerate disc degeneration.

2.
World J Microbiol Biotechnol ; 37(3): 42, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547564

RESUMO

Essential oils and their main components, monoterpenes, have been proven to be important alternatives for the control of pathogenic and spoiling microorganisms, but the mode of action of these compounds is poorly understood. This work aimed to determine the mode of action of citral and geraniol on the model yeast Saccharomyces cerevisiae using a flow cytometry approach. Exponentially growing yeast cells were treated with different concentrations of citral and geraniol for 3 h, and evaluated for cell wall susceptibility to glucanase, membrane integrity, reactive oxygen species (ROS) accumulation, mitochondrial membrane potential, and metacaspase activity. Results provide strong evidence that citral and geraniol acute fungicidal activity against Saccharomyces cells involves the loss of membrane and cell wall integrity resulting in a dose-dependent apoptotic/necrotic cell death. However, yeast cells that escape this first cell membrane disruption, particularly evident on sub-lethal concentration, die by metacaspase-mediated apoptosis induced by the accumulation of intracellular ROS. The deleted mutant on the yca1 gene showed high tolerance to citral and geraniol.


Assuntos
Monoterpenos Acíclicos/farmacologia , Caspases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Apoptose , Membrana Celular/metabolismo , Farmacorresistência Fúngica , Citometria de Fluxo , Deleção de Genes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
3.
Pestic Biochem Physiol ; 170: 104698, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980053

RESUMO

Essential oils and their main compounds, monoterpenoids, are considered as alternative control systems for phytopathogenic fungi, particularly those related to late diseases of fruits and vegetables, like anthracnose caused by Colletotrichum species. In this context, we studied the effect of twenty monoterpenoids on Colletotrichum fructicola and C. acutatum to elucidate their effectiveness and mechanisms of action. Thus, we analyzed mycelial growth and conidial inhibitory concentration, as well as the effect of selected monoterpenoids on membrane integrity and cell vitality, reactive oxygen species (ROS) accumulation, and mitochondrial membrane potential by flow cytometry. The results showed that oxygenated monoterpenoids (alcohols and aldehydes) exhibited higher antifungal activity than their corresponding hydrocarbons, esters, and cyclic counterparts. Indicating that OH- and O- radicals react with cellular components affecting fungal homeostasis. In this sense, selected monoterpenoids (citral, citronellol, geraniol, carvacrol, and thymol) inhibited conidial germination of C. acutatum in a dose-dependent manner. The inhibition of conidial germination is associated with a loss of membrane integrity, a decrease of cell metabolism, and a dose-dependent accumulation of ROS, which was non-directly associated with modifications on mitochondrial membrane potential. Membrane dysfunction and ROS accumulation may be responsible for the necrotic behavior induced by high monoterpenoids concentrations, and possible apoptotic response in sub dosages of these compounds.


Assuntos
Colletotrichum , Antifúngicos/farmacologia , Frutas , Monoterpenos/farmacologia , Esporos Fúngicos
4.
Pestic Biochem Physiol ; 149: 137-142, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30033009

RESUMO

Dithianon is a broad-spectrum anthraquinone fungicide used to control several diseases of grapes, apples, and other fruits and vegetables. Its mode of action is described as multi-site and associated to thiol-reactivity. As other fungicides can affect non-phytopathogenic organisms as yeasts and bacteria, with impact on microbial population, diversity, and fermentation processes. In this context, we study the effect of dithianon on the model organism and fermentative yeast Saccharomyces cerevisiae in order to elucidate the mechanisms involved in yeast cell death., and explain its interference on wine fermentation kinetics. Thus for, we analyzed cellular protein and non-protein thiols, membrane and cell wall integrity, reactive oxygen species accumulation, mitochondrial membrane potential, and phosphatidylserine externalization. The results showed that when exponentially aerobic growing cells of S. cerevisiae are submitted to acute dithianon treatment they loss cell wall and membrane integrity, dying by necrosis, and this behavior is associated to a depletion of reduced proteic and non-proteic thiol groups. We also detected an important increase of cellular reactive oxygen species (ROS) associated to mitochondrial membrane potential modifications on dithianon treated cells. ROS accumulation was not associated to apoptotic cell death, but can be responsible for intracellular damages. Moreover, necrotic cell death induced by dithianon explains its effect on the kinetics of wine fermentations.


Assuntos
Antraquinonas/farmacologia , Morte Celular/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fermentação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Necrose , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/metabolismo , Vitis/metabolismo , Vinho
5.
Int J Med Mushrooms ; 20(1): 31-46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29604911

RESUMO

Cumulative evidence from research studies has shown that the shiitake culinary-medicinal mushroom, Lentinus edodes, is an excellent source of natural antitumor agents and is capable of inhibiting cancer cell growth. However, the cell signaling pathway that leads tumor cells to apoptosis is not well understood because many chemical compounds may be acting. This study investigated the chemopreventive effects of an L. edodes aqueous extract on human HEp-2 epithelial larynx carcinoma cells and normal human MRC-5 lung fibroblasts by identifying proliferative and apoptotic pathways. The chemical characterization of the dry powder was assessed by high-performance liquid chromatography. Antiproliferative and proapoptotic effects induced by the extract were evaluated by assessing proliferative markers, cell sorting through flow cytometry, and expression levels of apoptotic proteins with Western blotting. The results suggest that inhibition of cell proliferation was more prominent in HEp-2 than in MRC-5 cells. Cell death analysis showed the appearance of cell populations in the sub-G1 phase, with late apoptotic signal increased in a dose-dependent manner. In addition, the aqueous extract induced depolarization of mitochondria, activating the generation of intracellular reactive oxygen species in HEp-2 cells. These observations suggest that L. edodes extract may exert a chemopreventive effect, regulating mitotic induction of apoptogenic signals. These findings highlight the mushroom's pharmacological potential in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cogumelos Shiitake/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Gálico/análise , Humanos , Concentração Inibidora 50 , Laringe/citologia , Laringe/patologia , Lentinano/farmacologia , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitose/efeitos dos fármacos , Fenóis/análise , Fenóis/química , Espécies Reativas de Oxigênio/metabolismo , Água/química
6.
Food Chem Toxicol ; 112: 383-392, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29337231

RESUMO

Pleurotus sajor-caju (PSC) is an edible mushroom used in food supplements, presenting antitumor properties through induction of cell death pathways. The PSC potential against colorectal cancer was analyzed by exposing HCT116wt cells to different PSC extracts. The PSC n-hexane extract (PSC-hex) showed the highest cytotoxicity effect (IC50 value 0.05 mg/mL). The observed cytotoxicity was then associated to apoptosis-promoting and cell cycle-arrest pathways. PSC-hex was able to induce apoptosis related to breakdown of mitochondrial membrane potential and ROS generation. The absence of cytotoxicity in HTC116-p53 and HTC116-Bax cells, alongside with an increase in p53, Bax and Caspase-3 expression, and decrease in Bcl-2 expression, supports that the pro-apoptotic effect is probably induced through a p53 associated pathway. PSC-hex induced cell cycle arrest at G2/M in HCT116wt without cytotoxicity in HTC116-p21 cells. These findings suggest that a p21/p53 cell cycle regulation pathway is probably disrupted by compounds present on PSC-hex. Identification of the major components was then performed with ergosta-5,7,22-trien-3ß-ol representing 30.6% of total weight. In silico docking studies of ergosta-5,7,22-trien-3ß against Bcl-2 were performed and results show a credible interaction with the Bcl-2 hydrophobic cleft. The results show that PSC-hex can be used as supplementary food for adjuvant therapy in colorectal carcinoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/terapia , Suplementos Nutricionais , Pleurotus/química , Antineoplásicos/isolamento & purificação , Caspase 3/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ergosterol/análogos & derivados , Ergosterol/isolamento & purificação , Ergosterol/farmacologia , Fase G2/efeitos dos fármacos , Células HCT116 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
7.
World J Microbiol Biotechnol ; 33(8): 159, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28748404

RESUMO

Captan is one of the most widely used broad-spectrum fungicide applied to control several early and late diseases of grapes, apples, and other fruits and vegetables, and as other phthalimide fungicides is defined as a multisite compound with thiol-reactivity. Captan can affect non-target organisms as yeasts, modifying microbial populations and fermentation processes. In this study, we asked whether Captan thiol-reactivity and other mechanisms are involved in acute Captan-induced cell death on aerobic growing Saccharomyces cerevisiae. Thus for, we analyze cellular protein and non-protein thiols, cell membrane integrity, reactive oxygen species accumulation, phosphatidylserine externalization, and apoptotic mutants behavior. The results showed that when submitted to acute Captan treatment most cells lost their membrane integrity and died by necrosis due to Captan reaction with thiols. However, part of the cells, even maintaining their membrane integrity, lost their culture ability. These cells showed an apoptotic behavior that may be the result of non-protein thiol depletion and consequent increase of reactive oxygen species (ROS). ROS accumulation triggers a metacaspase-dependent apoptotic cascade, as shown by the higher viability of the yca1-deleted mutant. Together, necrosis and apoptosis are responsible for the high mortality detected after acute Captan treatment of aerobically growing cells of S. cerevisiae.


Assuntos
Apoptose/efeitos dos fármacos , Captana/farmacologia , Morte Celular/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Fermentação , Fungicidas Industriais/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Necrose , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA