Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(8): 107400, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554441

RESUMO

The glycine receptor alpha 2 (GlyRα2) is a ligand-gated ion channel which upon activation induces a chloride conductance. Here, we investigated the role of GlyRα2 in dopamine-stimulated striatal cell activity and behavior. We show that depletion of GlyRα2 enhances dopamine-induced increases in the activity of putative dopamine D1 receptor-expressing striatal projection neurons, but does not alter midbrain dopamine neuron activity. We next show that the locomotor response to d-amphetamine is enhanced in GlyRα2 knockout animals, and that this increase correlates with c-fos expression in the dorsal striatum. 3-D modeling revealed an increase in the neuronal ensemble size in the striatum in response to D-amphetamine in GlyRα2 KO mice. Finally, we show enhanced appetitive conditioning in GlyRα2 KO animals that is likely due to increased motivation, but not changes in associative learning or hedonic response. Taken together, we show that GlyRα2 is an important regulator of dopamine-stimulated striatal activity and function.

2.
Brain Commun ; 5(1): fcad007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865673

RESUMO

Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia.

3.
J Neurosci ; 41(37): 7831-7847, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34348999

RESUMO

The principal neurons of the striatum, the spiny projection neurons (SPNs), make inhibitory synaptic connections with each other via collaterals of their main axon, forming a local lateral inhibition network. Serotonin, acting via the 5-HT1B receptor, modulates neurotransmitter release from SPN terminals in striatal output nuclei, but the role of 5-HT1B receptors in lateral inhibition among SPNs in the striatum is unknown. Here, we report the effects of 5-HT1B receptor activation on lateral inhibition in the mouse striatum. Whole-cell recordings were made from SPNs in acute brain slices of either sex, while optogenetically activating presynaptic SPNs or fast-spiking interneurons (FSIs). Activation of 5-HT1B receptors significantly reduced the amplitude of IPSCs evoked by optical stimulation of both direct and indirect pathway SPNs. This reduction was blocked by application of a 5-HT1B receptor antagonist. Activation of 5-HT1B receptors did not reduce the amplitude of IPSCs evoked from FSIs. These results suggest a new role for serotonin as a modulator of lateral inhibition among striatal SPNs. The 5-HT1B receptor may, therefore, be a suitable target for future behavioral experiments investigating the currently unknown role of lateral inhibition in the function of the striatum.SIGNIFICANCE STATEMENT We show that stimulation of serotonin receptors reduces the efficacy of lateral inhibition between spiny projection neurons (SPNs), one of the biggest GABAergic sources in the striatum, by activation of the serotonin 5-HT1B receptor. The striatum receives serotonergic input from the dorsal raphe nuclei and is important in behavioral brain functions like learning and action selection. Our findings suggest a new role for serotonin in modulating the dynamics of neural interactions in the striatum, which extends current knowledge of the mechanisms of the behavioral effects of serotonin.


Assuntos
Corpo Estriado/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
4.
Eur Neuropsychopharmacol ; 49: 23-37, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33780705

RESUMO

The specific role of the striatum, especially its dorsolateral (DLS) and dorsomedial (DMS) parts, in male copulatory behavior is still debated. In order to clarify their contribution to male sexual behavior, we specifically ablated the major striatal neuronal subpopulations, direct and indirect medium spiny neurons (dMSNs and iMSNs) in DMS or DLS, and dMSNs, iMSNs and cholinergic interneurons in nucleus accumbens (NAc), The main results of this study can be summarized as follows: In DMS, dMSN ablation causes a reduction in the percent of mice that mount a receptive female, and a complex alteration in the parameters of the copulatory performance, that is largely opposite to the alterations induced by iMSN ablation. In DLS, dMSN ablation causes a widespread alteration in the copulatory behavior parameters, that tends to disappear at repetition of the test; iMSN ablation induces minor copulatory behavior alterations that are complementary to those observed after dMSN ablation. In NAc, dMSN ablation causes a marked reduction in the percent of mice that mount a receptive female and a disruption of copulatory behavior, while iMSN ablation induces minor copulatory behavior alterations that are opposite to those observed with dMSN ablation, and cholinergic neuron ablation induces a selective decrease in mount latency. Overall, present data point to a complex region and cell-specific contribution to copulatory behavior of the different neuronal subpopulations of both dorsal and ventral striatum, with a prominent role of the dMSNs of the different subregions.


Assuntos
Corpo Estriado , Estriado Ventral , Animais , Feminino , Interneurônios , Masculino , Camundongos , Neostriado , Neurônios
5.
Biol Psychiatry ; 88(12): 945-954, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32711953

RESUMO

BACKGROUND: As an integrator of molecular pathways, mTOR (mammalian target of rapamycin) has been associated with diseases including neurodevelopmental, psychiatric, and neurodegenerative disorders such as autism spectrum disorder, schizophrenia, and Huntington's disease. An important brain area involved in all these diseases is the striatum. However, the mechanisms behind how mTOR is involved in striatal physiology and its relative role in distinct neuronal populations in these striatal-related diseases still remain to be clarified. METHODS: Using Drd1-Cre mTOR-conditional knockout male mice, we combined behavioral, biochemical, electrophysiological, and morphological analysis aiming to untangle the role of mTOR in direct pathway striatal projection neurons and how this would impact on striatal physiology. RESULTS: Our results indicate deep behavioral changes in absence of mTOR in Drd1-expressing neurons such as decreased spontaneous locomotion, impaired social interaction, and decreased marble-burying behavior. These alterations were accompanied by a Kv1.1-induced increase in the fast phase of afterhyperpolarization and coincident decreased distal spine density in striatal direct pathway striatal projection neurons. The physiological changes were mechanistically independent of protein synthesis but sensitive to pharmacological blockade of transforming protein RhoA activity. CONCLUSIONS: These results identify mTOR signaling as an important regulator of striatal functions through an intricate mechanism involving RhoA and culminating in Kv1.1 overfunction, which could be targeted to treat striatal-related monogenic disorders associated with the mTOR signaling pathway.


Assuntos
Transtorno do Espectro Autista , Sirolimo , Animais , Corpo Estriado/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
6.
Sci Rep ; 10(1): 7752, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385372

RESUMO

Human induced pluripotent stem cells (iPSCs) are used to generate models of human diseases that recapitulate the pathogenic process as it occurs in affected cells. Many differentiated cell types can currently be obtained from iPSCs, but no validated protocol is yet available to specifically generate primary proprioceptive neurons. Proprioceptors are affected in a number of genetic and acquired diseases, including Friedreich ataxia (FRDA). To develop a cell model that can be applied to conditions primarily affecting proprioceptors, we set up a protocol to differentiate iPSCs into primary proprioceptive neurons. We modified the dual-SMAD inhibition/WNT activation protocol, previously used to generate nociceptor-enriched cultures of primary sensory neurons from iPSCs, to favor instead the generation of proprioceptors. We succeeded in substantially enriching iPSC-derived primary sensory neuron cultures for proprioceptors, up to 50% of finally differentiated neurons, largely exceeding the proportion of 7.5% normally represented by these cells in dorsal root ganglia. We also showed that almost pure populations of proprioceptors can be purified from these cultures by fluorescence-activated cell sorting. Finally, we demonstrated that the protocol can be used to generate proprioceptors from iPSCs from FRDA patients, providing a cell model for this genetic sensory neuronopathy.


Assuntos
Diferenciação Celular , Ataxia de Friedreich/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Propriocepção , Células Receptoras Sensoriais/patologia , Humanos
7.
Eur J Neurosci ; 51(6): 1388-1402, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31549447

RESUMO

The striatum is mainly composed by medium spiny neurons (95 %) (MSNs). Although outnumbered, in other brain regions such as the hippocampus and the cortex, somatostatin interneurons (SSTi) are known to control and fine-tune the activity of principal cells. This information is still fragmented for the striatum. Here, we questioned the striatal functional consequences of the selective ablation of SSTi in the striatum at the behavioural and cellular levels. We identified increased excitability coupled with decreased distal spine density in MSNs from SSTi-ablated mice. Although the ethological behavioural analysis did not reveal differences between the groups, SSTi-ablated mice were significantly more sensitive to the locomotor effects of cocaine without changes in motivation. This was accompanied by increased expression of the dopamine transporter (DAT) in the ventral striatum. Altogether, we show that SSTi are important players in the maintenance of MSN excitability and spine density impacting on mechanisms towards hyperdopaminergic states.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , Corpo Estriado , Interneurônios , Camundongos , Camundongos Transgênicos , Neurônios , Somatostatina
8.
Mol Psychiatry ; 25(8): 1876-1900, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-29950682

RESUMO

Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca2+ influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.


Assuntos
Envelhecimento/metabolismo , Depressão Sináptica de Longo Prazo , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Hipocampo/metabolismo , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley , Memória Espacial
9.
Neuropharmacology ; 168: 107923, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874169

RESUMO

The olfactory tubercle (OT), an important nucleus in processing sensory information, has been reported to change cortical activity under odor. However, little is known about the physiological role and mechanism of the OT in sleep-wake regulation. The OT expresses abundant adenosine A2A receptors (A2ARs), which are important in sleep regulation. Therefore, we hypothesized that the OT regulates sleep via A2ARs. This study examined sleep-wake profiles through electroencephalography and electromyography recordings with pharmacological and chemogenetic manipulations in freely moving rodents. Compared with their controls, activation of OT A2ARs pharmacologically and OT A2AR neurons via chemogenetics increased non-rapid eye movement sleep for 5 and 3 h, respectively, while blockade of A2ARs decreased non-rapid eye movement sleep. Tracing and electrophysiological studies showed OT A2AR neurons projected to the ventral pallidum and lateral hypothalamus, forming inhibitory innervations. Together, these findings indicate that A2ARs in the OT play an important role in sleep regulation.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Tubérculo Olfatório/metabolismo , Receptor A2A de Adenosina/metabolismo , Sono/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Eletroencefalografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tubérculo Olfatório/efeitos dos fármacos , Fenetilaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/genética , Roedores , Sono/efeitos dos fármacos
10.
J Neurosci ; 39(38): 7513-7528, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31363062

RESUMO

The regulation of the striatum by the GPCR signaling through neuromodulators is essential for its physiology and physiopathology, so it is necessary to know all the compounds of these pathways. In this study, we identified a new important partner of the dopaminergic pathway: GPRIN3 (a member of the GPRIN family). GPRIN3 is highly expressed in the striatum but with undefined function. Cell sorting of medium spiny neurons (MSNs) in indirect MSNs and direct MSNs indicated the presence of the GPRIN3 gene in both populations with a preferential expression in indirect MSNs. This led us to generate GPRIN3 KO mice by CRISPR/Cas9 and test male animals to access possible alterations in morphological, electrophysiological, and behavioral parameters following its absence. 3D reconstruction analysis of MSNs revealed increased neuronal arborization in GPRIN3 KO and modified passive and active electrophysiological properties. These cellular alterations were coupled with increased motivation and cocaine-induced hyperlocomotion. Additionally, using a specific indirect MSN knockdown, we showed a preferential role for GPRIN3 in indirect MSNs related to the D2R signaling. Together, these results show that GPRIN3 is a mediator of D2R function in the striatum playing a major role in striatal physiology.SIGNIFICANCE STATEMENT The striatum is the main input of the basal ganglia processing information from different brain regions through the combined actions of direct pathway neurons and indirect pathway neurons. Both neuronal populations are defined by the expression of dopamine D1R or D2R GPCRs, respectively. How these neurons signal to the respective G-protein is still debatable. Here we identified GPRIN3 as a putative selective controller of D2R function in the striatum playing a critical role in striatal-associated behaviors and cellular functions. This study represents the identification of a new target to tackle striatal dysfunction associated with the D2R, such as schizophrenia, Parkinson's disease, and drug addiction.


Assuntos
Corpo Estriado/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
11.
Front Mol Neurosci ; 11: 380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374290

RESUMO

Glycine receptors (GlyRs) containing the α2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the underlying pathophysiology is not described yet. Here, using Glra2-knockout mice, we found a GlyR-dependent effect on neonatal spontaneous activity of dorsal striatum medium spiny neurons (MSNs) and maturation of the incoming glutamatergic innervation. Our data demonstrate that functional GlyRs are highly expressed in MSNs of one-week-old mice, but they do not generate endogenous chloride-mediated tonic or phasic current. Despite of that, knocking out the Glra2 severely affects the shape of action potentials and impairs spontaneous activity and the frequency of miniature AMPA receptor-mediated currents in MSNs. This reduction in spontaneous activity and glutamatergic signaling can attribute to the observed changes in neonatal behavioral phenotypes as seen in ultrasonic vocalizations and righting reflex. In adult Glra2-knockout animals, the glutamatergic synapses in MSNs remain functionally underdeveloped. The number of glutamatergic synapses and release probability at presynaptic site remain unaffected, but the amount of postsynaptic AMPA receptors is decreased. This deficit is a consequence of impaired development of the neuronal circuitry since acute inhibition of GlyRs by strychnine in adult MSNs does not affect the properties of glutamatergic synapses. Altogether, these results demonstrate that GlyR-mediated signaling supports neonatal spontaneous MSN activity and, in consequence, promotes the functional maturation of glutamatergic synapses on MSNs. The described mechanism might shed light on the pathophysiological mechanisms in GLRA2-linked autism spectrum disorder cases.

12.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002119

RESUMO

Melanoma antigen genes (Mage) were first described as tumour markers. However, some of Mage are also expressed in healthy cells where their functions remain poorly understood. Here, we describe an unexpected role for one of these genes, Maged1, in the control of behaviours related to drug addiction. Mice lacking Maged1 are insensitive to the behavioural effects of cocaine as assessed by locomotor sensitization, conditioned place preference (CPP) and drug self-administration. Electrophysiological experiments in brain slices and conditional knockout mice demonstrate that Maged1 is critical for cortico-accumbal neurotransmission. Further, expression of Maged1 in the prefrontal cortex (PFC) and the amygdala, but not in dopaminergic or striatal and other GABAergic neurons, is necessary for cocaine-mediated behavioural sensitization, and its expression in the PFC is also required for cocaine-induced extracellular dopamine (DA) release in the nucleus accumbens (NAc). This work identifies Maged1 as a critical molecule involved in cellular processes and behaviours related to addiction.


Assuntos
Comportamento Aditivo/genética , Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína/farmacologia , Proteínas de Neoplasias/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Cocaína/administração & dosagem , Dependovirus , Dopamina/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Reforço Psicológico , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
13.
Nat Commun ; 8(1): 734, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963505

RESUMO

Sleep control is ascribed to a two-process model, a widely accepted concept that posits homoeostatic drive and a circadian process as the major sleep-regulating factors. Cognitive and emotional factors also influence sleep-wake behaviour; however, the precise circuit mechanisms underlying their effects on sleep control are unknown. Previous studies suggest that adenosine has a role affecting behavioural arousal in the nucleus accumbens (NAc), a brain area critical for reinforcement and reward. Here, we show that chemogenetic or optogenetic activation of excitatory adenosine A2A receptor-expressing indirect pathway neurons in the core region of the NAc strongly induces slow-wave sleep. Chemogenetic inhibition of the NAc indirect pathway neurons prevents the sleep induction, but does not affect the homoeostatic sleep rebound. In addition, motivational stimuli inhibit the activity of ventral pallidum-projecting NAc indirect pathway neurons and suppress sleep. Our findings reveal a prominent contribution of this indirect pathway to sleep control associated with motivation.In addition to circadian and homoeostatic drives, motivational levels influence sleep-wake cycles. Here the authors demonstrate that adenosine receptor-expressing neurons in the nucleus accumbens core that project to the ventral pallidum are inhibited by motivational stimuli and are causally involved in the control of slow-wave sleep.


Assuntos
Núcleo Accumbens/fisiologia , Sono/fisiologia , Animais , Ritmo Circadiano , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Motivação , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/fisiologia
14.
Elife ; 62017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29022877

RESUMO

Dysfunction of the striatum is frequently associated with sleep disturbances. However, its role in sleep-wake regulation has been paid little attention even though the striatum densely expresses adenosine A2A receptors (A2ARs), which are essential for adenosine-induced sleep. Here we showed that chemogenetic activation of A2AR neurons in specific subregions of the striatum induced a remarkable increase in non-rapid eye movement (NREM) sleep. Anatomical mapping and immunoelectron microscopy revealed that striatal A2AR neurons innervated the external globus pallidus (GPe) in a topographically organized manner and preferentially formed inhibitory synapses with GPe parvalbumin (PV) neurons. Moreover, lesions of GPe PV neurons abolished the sleep-promoting effect of striatal A2AR neurons. In addition, chemogenetic inhibition of striatal A2AR neurons led to a significant decrease of NREM sleep at active period, but not inactive period of mice. These findings reveal a prominent contribution of striatal A2AR neuron/GPe PV neuron circuit in sleep control.


Assuntos
Globo Pálido/fisiologia , Neostriado/fisiologia , Neurônios/fisiologia , Parvalbuminas/análise , Receptor A2A de Adenosina/análise , Sono , Vigília , Adenosina/metabolismo , Animais , Mapeamento Encefálico , Masculino , Camundongos , Microscopia Imunoeletrônica , Neurônios/química
15.
Brain Struct Funct ; 222(3): 1351-1366, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27485749

RESUMO

Rapid eye movement (REM) sleep behavior disorder in humans is often accompanied by a reduced ability to smell and detect odors, and olfactory bulbectomized rats exhibit increased REM sleep, suggesting that the olfactory bulb (OB) is involved in REM-sleep regulation. However, the molecular mechanism of REM-sleep regulation by the OB is unknown. Adenosine promotes sleep and its A2A receptors (A2AR) are expressed in the OB. We hypothesized that A2AR in the OB regulate REM sleep. Bilateral microinjections of the A2AR antagonist SCH58261 into the rat OB increased REM sleep, whereas microinjections of the A2AR agonist CGS21680 decreased REM sleep. Similar to the A2AR antagonist, selective A2AR knockdown by adeno-associated virus carrying short-hairpin RNA for A2AR in the rat OB increased REM sleep. Using chemogenetics on the basis of designer receptors exclusively activated by designer drugs, we demonstrated that the inhibition of A2AR neurons increased REM sleep, whereas the activation of these neurons decreased REM sleep. Moreover, using a conditional anterograde axonal tract-tracing approach, we found that OB A2AR neurons innervate the piriform cortex and olfactory tubercle. These novel findings indicate that adenosine suppresses REM sleep via A2AR in the OB of rodents.


Assuntos
Bulbo Olfatório/fisiologia , Receptor A2A de Adenosina/metabolismo , Sono REM/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Análise de Variância , Animais , Dependovirus/genética , Relação Dose-Resposta a Droga , Eletroencefalografia , Eletromiografia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Bulbo Olfatório/efeitos dos fármacos , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/genética , Sono REM/genética , Transdução Genética , Triazóis/farmacologia
16.
Front Mol Neurosci ; 10: 442, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375305

RESUMO

Medium spiny neurons (MSNs) of the dorsal striatum represent the first relay of cortico-striato-thalamic loop, responsible for the initiation of voluntary movements and motor learning. GABAergic transmission exerts the main inhibitory control of MSNs. However, MSNs also express chloride-permeable glycine receptors (GlyRs) although their subunit composition and functional significance in the striatum is unknown. Here, we studied the function of GlyRs in MSNs of young adult mice. We show that MSNs express functional GlyRs, with α2 being the main agonist binding subunit. These receptors are extrasynaptic and depolarizing at resting state. The pharmacological inhibition of GlyRs, as well as inactivation of the GlyR α2 subunit gene hyperpolarize the membrane potential of MSNs and increase their action potential firing offset. Mice lacking GlyR α2 showed impaired motor memory consolidation without any changes in the initial motor performance. Taken together, these results demonstrate that tonically active GlyRs regulate the firing properties of MSNs and may thus affect the function of basal ganglia.

17.
Front Behav Neurosci ; 11: 256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375331

RESUMO

The striatum is a key brain structure involved in the processing of cognitive flexibility, which results from the balance between the flexibility demanded for novel learning of motor actions and the inflexibility required to preserve previously learned actions. In particular, the dorsolateral portion of the striatum (DLS) is engaged in the learning of action sequence. This process is temporally driven by fine adjustments in the function of the two main neuronal populations of the striatum, known as the direct pathway medium spiny neurons (dMSNs) and indirect pathway medium spiny neurons (iMSNs). Here, using optogenetics, behavioral, and electrophysiological tools, we addressed the relative role of both neuronal populations in the acquisition of a reversal dual action sequence in the DLS. While the channelrhodopsin-induced activation of dMSNs and iMSNs of the DLS did not induce changes in the learning rate of the sequence, the specific activation of the dMSNs of the DLS facilitated the acquisition of a reversal dual action sequence; the activation of iMSNs induced a significant deficit in the acquisition of the same task. Taken together our results indicate an antagonistic relationship between dMSNs and iMSNs on the acquisition of a reversal dual action sequence.

18.
Neurobiol Dis ; 94: 157-68, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27353294

RESUMO

The cerebellar pathologies in peroxisomal diseases underscore that these organelles are required for the normal development and maintenance of the cerebellum, but the mechanisms have not been resolved. Here we investigated the origins of the early-onset coordination impairment in a mouse model with neural selective deficiency of multifunctional protein-2, the central enzyme of peroxisomal ß-oxidation. At the age of 4weeks, Nestin-Mfp2(-/-) mice showed impaired motor learning on the accelerating rotarod and underperformed on the balance beam test. The gross morphology of the cerebellum and Purkinje cell arborization were normal. However, electrophysiology revealed a reduced Purkinje cell firing rate, a decreased excitability and an increased membrane capacitance. The distribution of climbing and parallel fiber synapses on Purkinje cells was immature and was accompanied by an increased spine length. Despite normal myelination, Purkinje cell axon degeneration was evident from the occurrence of axonal swellings containing accumulated organelles. In conclusion, the electrical activity, axonal integrity and wiring of Purkinje cells are exquisitely dependent on intact peroxisomal ß-oxidation in neural cells.


Assuntos
Cerebelo/metabolismo , Proteína Multifuncional do Peroxissomo-2/metabolismo , Células de Purkinje/metabolismo , Sinapses/fisiologia , Animais , Axônios/metabolismo , Ataxia Cerebelar/metabolismo , Camundongos Knockout , Proteína Multifuncional do Peroxissomo-2/deficiência
19.
J Neurosci ; 36(18): 4976-92, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147651

RESUMO

UNLABELLED: The basal ganglia (BG) control action selection, motor programs, habits, and goal-directed learning. The striatum, the principal input structure of BG, is predominantly composed of medium-sized spiny neurons (MSNs). Arising from these spatially intermixed MSNs, two inhibitory outputs form two main efferent pathways, the direct and indirect pathways. Striatonigral MSNs give rise to the activating, direct pathway MSNs and striatopallidal MSNs to the inhibitory, indirect pathway (iMSNs). BG output nuclei integrate information from both pathways to fine-tune motor procedures and to acquire complex habits and skills. Therefore, balanced activity between both pathways is crucial for harmonious functions of the BG. Despite the increase in knowledge concerning the role of glutamate NMDA receptors (NMDA-Rs) in the striatum, understanding of the specific functions of NMDA-R iMSNs is still lacking. For this purpose, we generated a conditional knock-out mouse to address the functions of the NMDA-R in the indirect pathway. At the cellular level, deletion of GluN1 in iMSNs leads to a reduction in the number and strength of the excitatory corticostriatopallidal synapses. The subsequent scaling down in input integration leads to dysfunctional changes in BG output, which is seen as reduced habituation, delay in goal-directed learning, lack of associative behavior, and impairment in action selection or skill learning. The NMDA-R deletion in iMSNs causes a decrease in the synaptic strength of striatopallidal neurons, which in turn might lead to a imbalanced integration between direct and indirect MSN pathways, making mice less sensitive to environmental change. Therefore, their ability to learn and adapt to the environment-based experience was significantly affected. SIGNIFICANCE STATEMENT: The striatum controls habits, locomotion, and goal-directed behaviors by coordinated activation of two antagonistic pathways. Insofar as NMDA receptors (NMDA-Rs) play a key role in synaptic plasticity essential for sustaining these behaviors, we generated a mouse model lacking NMDA-Rs specifically in striatopallidal neurons. To our knowledge, this is the first time that a specific deletion of inhibitory, indirect pathway medium-sized spiny neuron (iMSN) NMDA-Rs has been used to address the role of these receptors in the inhibitory pathway. Importantly, we found that this specific deletion led to a significant reduction in the number and strength of the cortico-iMSN synapses, which resulted in the significant impairments of behaviors orchestrated by the basal ganglia. Our findings indicate that the NMDA-Rs of the indirect pathway are essential for habituation, action selection, and goal-directed learning.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/fisiologia , Globo Pálido/fisiologia , Locomoção/fisiologia , Vias Neurais/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Operante/fisiologia , Corpo Estriado/citologia , Potenciais Pós-Sinápticos Excitadores/genética , Globo Pálido/citologia , Objetivos , Habituação Psicofisiológica/genética , Habituação Psicofisiológica/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Destreza Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética
20.
Dev Cell ; 34(3): 338-50, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26190144

RESUMO

Ciliary transport is required for ciliogenesis, signal transduction, and trafficking of receptors to the primary cilium. Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) have been associated with ciliary dysfunction; however, its role in regulating ciliary phosphoinositides is unknown. Here we report that in neural stem cells, phosphatidylinositol 4-phosphate (PI4P) is found in high levels in cilia whereas phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is not detectable. Upon INPP5E inactivation, PI(4,5)P2 accumulates at the ciliary tip whereas PI4P is depleted. This is accompanied by recruitment of the PI(4,5)P2-interacting protein TULP3 to the ciliary membrane, along with Gpr161. This results in an increased production of cAMP and a repression of the Shh transcription gene Gli1. Our results reveal the link between ciliary regulation of phosphoinositides by INPP5E and Shh regulation via ciliary trafficking of TULP3/Gpr161 and also provide mechanistic insight into ciliary alterations found in Joubert and MORM syndromes resulting from INPP5E mutations.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Anormalidades Múltiplas/genética , Animais , Movimento Celular/genética , Células Cultivadas , Doenças Cerebelares/genética , Cerebelo/anormalidades , AMP Cíclico/biossíntese , Embrião de Mamíferos/metabolismo , Anormalidades do Olho/genética , Oftalmopatias/genética , Hipocampo/embriologia , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Doenças Renais Císticas/genética , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Obesidade/genética , Doenças do Pênis/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transporte Proteico/genética , Retina/anormalidades , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA