Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Clin Immunol ; 44(1): 30, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133879

RESUMO

Genetic variants in IL6ST encoding the shared cytokine receptor for the IL-6 cytokine family GP130 have been associated with a diverse number of clinical phenotypes and disorders. We provide a molecular classification for 59 reported rare IL6ST pathogenic or likely pathogenic variants and additional polymorphisms. Based on loss- or gain-of-function, cytokine selectivity, mono- and biallelic associations, and variable cellular mosaicism, we grade six classes of IL6ST variants and explore the potential for additional variants. We classify variants according to the American College of Medical Genetics and Genomics criteria. Loss-of-function variants with (i) biallelic complete loss of GP130 function that presents with extended Stüve-Wiedemann Syndrome; (ii) autosomal recessive hyper-IgE syndrome (HIES) caused by biallelic; and (iii) autosomal dominant HIES caused by monoallelic IL6ST variants both causing selective IL-6 and IL-11 cytokine loss-of-function defects; (iv) a biallelic cytokine-specific variant that exclusively impairs IL-11 signaling, associated with craniosynostosis and tooth abnormalities; (v) somatic monoallelic mosaic constitutively active gain-of-function variants in hepatocytes that present with inflammatory hepatocellular adenoma; and (vi) mosaic constitutively active gain-of-function variants in hematopoietic and non-hematopoietic cells that are associated with an immune dysregulation syndrome. In addition to Mendelian IL6ST coding variants, there are common non-coding cis-acting variants that modify gene expression, which are associated with an increased risk of complex immune-mediated disorders and trans-acting variants that affect GP130 protein function. Our taxonomy highlights IL6ST as a gene with particularly strong functional and phenotypic diversity due to the combinatorial biology of the IL-6 cytokine family and predicts additional genotype-phenotype associations.


Assuntos
Receptor gp130 de Citocina , Interleucina-11 , Síndrome de Job , Humanos , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119489, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37271223

RESUMO

The cytokine interleukin-6 (IL-6) has considerable pro-inflammatory properties and is a driver of many physiological and pathophysiological processes. Cellular responses to IL-6 are mediated by membrane-bound or soluble forms of the IL-6 receptor (IL-6R) complexed with the signal-transducing subunit gp130. While expression of the membrane-bound IL-6R is restricted to selected cell types, soluble IL-6R (sIL-6R) enables gp130 engagement on all cells, a process termed IL-6 trans-signalling and considered to be pro-inflammatory. sIL-6R is predominantly generated through proteolytic processing by the metalloproteinase ADAM17. ADAM17 also liberates ligands of the epidermal growth factor receptor (EGFR), which is a prerequisite for EGFR activation and results in stimulation of proliferative signals. Hyperactivation of EGFR mostly due to activating mutations drives cancer development. Here, we reveal an important link between overshooting EGFR signalling and the IL-6 trans-signalling pathway. In epithelial cells, EGFR activity induces not only IL-6 expression but also the proteolytic release of sIL-6R from the cell membrane by increasing ADAM17 surface activity. We find that this derives from the transcriptional upregulation of iRhom2, a crucial regulator of ADAM17 trafficking and activation, upon EGFR engagement, which results in increased surface localization of ADAM17. Also, phosphorylation of the EGFR-downstream mediator ERK mediates ADAM17 activity via interaction with iRhom2. In sum, our study reveals an unforeseen interplay between EGFR activation and IL-6 trans-signalling, which has been shown to be fundamental in inflammation and cancer.


Assuntos
Proteína ADAM17 , Interleucina-6 , Transdução de Sinais , Receptor gp130 de Citocina/genética , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/genética , Humanos
3.
J Immunol ; 210(11): 1717-1727, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058116

RESUMO

IL-6 plays a fundamental role in T cell differentiation and is strictly controlled by surface expression and shedding of IL-6R. IL-6 also acts on other cells that might affect T cell maturation. To study the impact of cell-autonomous and uncontrolled IL-6 signaling in T cells, we generated mice with a constitutively active IL-6R gp130 chain (Lgp130) expressed either in all T cells (Lgp130 × CD4Cre mice) or inducible in CD4+ T cells (Lgp130 × CD4CreERT2 mice). Lgp130 × CD4Cre mice accumulated activated T cells, including TH17 cells, in the lung, resulting in severe inflammation. Tamoxifen treatment of Lgp130 × CD4CreERT2 mice caused Lgp130 expression in 40-50% of CD4+ T cells, but mice developed lung disease only after several months. Lgp130+ CD4+ T cells were also enriched for TH17 cells; however, there was concomitant expansion of Lgp130- regulatory T cells, which likely restricted pathologic Lgp130+ T cells. In vitro, constitutive gp130 signaling in T cells enhanced but was not sufficient for TH17 cell differentiation. Augmented TH17 cell development of Lgp130+ T cells was also observed in Lgp130 × CD4CreERT2 mice infected with Staphylococcus aureus, but gp130 activation did not interfere with formation of TH1 cells against Listeria monocytogenes. Lgp130+ CD4+ T cells acquired a memory T cell phenotype and persisted in high numbers as a polyclonal T cell population in lymphoid and peripheral tissues, but we did not observe T cell lymphoma formation. In conclusion, cell-autonomous gp130 signaling alters T cell differentiation. Although gp130 signaling is not sufficient for TH17 cell differentiation, it still promotes accumulation of activated T cells in the lung that cause tissue inflammation.


Assuntos
Pneumonia , Células Th17 , Animais , Camundongos , Diferenciação Celular , Receptor gp130 de Citocina/metabolismo , Inflamação , Interleucina-6/metabolismo , Pulmão/metabolismo , Células Th1/metabolismo , Células Th17/metabolismo
4.
Cells ; 11(17)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36078095

RESUMO

Ectodomain shedding is an irreversible process to regulate inter- and intracellular signaling. Members of the a disintegrin and metalloprotease (ADAM) family are major mediators of ectodomain shedding. ADAM17 is involved in the processing of multiple substrates including tumor necrosis factor (TNF) α and EGF receptor ligands. Substrates of ADAM17 are selectively processed depending on stimulus and cellular context. However, it still remains largely elusive how substrate selectivity of ADAM17 is regulated. Tetraspanins (Tspan) are multi-membrane-passing proteins that are involved in the organization of plasma membrane micro-domains and diverse biological processes. Closely related members of the Tspan8 subfamily, including CD9, CD81 and Tspan8, are associated with cancer and metastasis. Here, we show that Tspan8 subfamily members use different strategies to regulate ADAM17 substrate selectivity. We demonstrate that in particular Tspan8 associates with both ADAM17 and TNF α and promotes ADAM17-mediated TNF α release through recruitment of ADAM17 into Tspan-enriched micro-domains. Yet, processing of other ADAM17 substrates is not altered by Tspan8. We, therefore, propose that Tspan8 contributes to tumorigenesis through enhanced ADAM17-mediated TNF α release and a resulting increase in tissue inflammation.


Assuntos
Proteínas ADAM , Desintegrinas , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteínas de Membrana , Especificidade por Substrato , Tetraspaninas/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
J Hepatol ; 77(6): 1631-1641, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35988690

RESUMO

BACKGROUND & AIMS: Primary liver cancers include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHODS: To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor a yellow fluorescent protein (YFP) reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KOFoxl1-CRE;RosaYFP) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months. RESULTS: In this Mdr2-KOFoxl1-CRE;RosaYFP mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-sequencing revealed enrichment of the IL-6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. Single-cell RNA-sequencing (scRNA-seq) analysis revealed that IL-6 is expressed by immune and parenchymal cells during senescence, and that IL-6 is part of the senescence-associated secretory phenotype. Administration of an anti-IL-6 antibody to Mdr2-KOFoxl1-CRE;RosaYFP mice inhibited the development of cHCC-CCA tumors. Blocking IL-6 trans-signaling led to a decrease in the number and size of cHCC-CCA tumors, indicating their dependence on this pathway. Furthermore, the administration of a senolytic agent inhibited IL-6 and the development of cHCC-CCA tumors. CONCLUSION: Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL-6, which derives in part from cells in senescence, plays an important role in this process via IL-6 trans-signaling. These findings could be applied to develop new therapeutic approaches for cHCC-CCA tumors. LAY SUMMARY: Combined hepatocellular carcinoma-cholangiocarcinoma is the third most prevalent type of primary liver cancer (i.e. a cancer that originates in the liver). Herein, we show that this type of cancer originates in stem cells in the liver and that it depends on inflammatory signaling. Specifically, we identify a cytokine called IL-6 that appears to be important in the development of these tumors. Our results could be used for the development of novel treatments for these aggressive tumors.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Células-Tronco , Transdução de Sinais , Carcinogênese , RNA , Ductos Biliares Intra-Hepáticos , Fatores de Transcrição Forkhead
6.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919140

RESUMO

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Assuntos
Proteína ADAM17/antagonistas & inibidores , Células Endoteliais/metabolismo , Necroptose , Neoplasias/etiologia , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Biomarcadores , Biomarcadores Tumorais , Comunicação Celular , Morte Celular , Suscetibilidade a Doenças/imunologia , Humanos , Necroptose/genética , Invasividade Neoplásica , Metástase Neoplásica , Inoculação de Neoplasia , Neoplasias/metabolismo , Neoplasias/terapia , Proteólise , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831323

RESUMO

Signaling via death receptor family members such as TNF-R1 mediates pleiotropic biological outcomes ranging from inflammation and proliferation to cell death. Pro-survival signaling is mediated via TNF-R1 complex I at the cellular plasma membrane. Cell death induction requires complex IIa/b or necrosome formation, which occurs in the cytoplasm. In many cell types, full apoptotic or necroptotic cell death induction requires the internalization of TNF-R1 and receptosome formation to properly relay the signal inside the cell. We interrogated the role of the enzyme A disintegrin and metalloprotease 17 (ADAM17)/TACE (TNF-α converting enzyme) in death receptor signaling in human hematopoietic cells, using pharmacological inhibition and genetic ablation. We show that in U937 and Jurkat cells the absence of ADAM17 does not abrogate, but rather increases TNF mediated cell death. Likewise, cell death triggered via DR3 is enhanced in U937 cells lacking ADAM17. We identified ADAM17 as the key molecule that fine-tunes death receptor signaling. A better understanding of cell fate decisions made via the receptors of the TNF-R1 superfamily may enable us, in the future, to more efficiently treat infectious and inflammatory diseases or cancer.


Assuntos
Proteína ADAM17/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/deficiência , Secretases da Proteína Precursora do Amiloide/metabolismo , Morte Celular , Sobrevivência Celular , Endocitose , Humanos , Células Jurkat , Células MCF-7 , Modelos Biológicos , NF-kappa B/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Células U937
9.
Front Cell Dev Biol ; 9: 688314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141712

RESUMO

Interleukin-6 (IL-6) is the name-giving cytokine of a family of eleven members, including IL-6, CNTF, LIF, and IL-27. IL-6 was first recognized as a B-cell stimulating factor but we now know that the cytokine plays a pivotal role in the orchestration of inflammatory processes as well as in inflammation associated cancer. Moreover, IL-6 is involved in metabolic regulation and it has been shown to be involved in major neural activities such as neuroprotection, which can help to repair and to reduce brain damage. Receptor complexes of all members formed at the plasma membrane contain one or two molecules of the signaling receptor subunit GP130 and the mechanisms of signal transduction are well understood. IL-6 type cytokines can also signal from endomembranes, in particular the endosome, and situations have been reported in which endocytosis of receptor complexes are a prerequisite of intracellular signaling. Moreover, pathogenic GP130 variants were shown to interfere with spatial activation of downstream signals. We here summarize the molecular mechanisms underlying spatial regulation of IL-6 family cytokine signaling and discuss its relevance for pathogenic processes.

10.
Semin Immunopathol ; 43(4): 609-624, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34047814

RESUMO

The liver is a vital organ with multiple functions and a large regenerative capacity. Tumours of the liver are the second most frequently cause of cancer-related death and develop in chronically inflamed livers. IL-6-type cytokines are mediators of inflammation and almost all members signal via the receptor subunit gp130 and the downstream signalling molecule STAT3. We here summarize current knowledge on how gp130 signalling and STAT3 in tumour cells and cells of the tumour micro-environment drives hepatic tumorigenesis. We furthermore discuss very recent findings describing also anti-tumorigenic roles of gp130/STAT3 and important considerations for therapeutic interventions.


Assuntos
Inflamação , Transdução de Sinais , Carcinogênese , Receptor gp130 de Citocina , Humanos , Fígado , Microambiente Tumoral
11.
J Allergy Clin Immunol ; 148(2): 585-598, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33771552

RESUMO

BACKGROUND: Biallelic variants in IL6ST, encoding GP130, cause a recessive form of hyper-IgE syndrome (HIES) characterized by high IgE level, eosinophilia, defective acute phase response, susceptibility to bacterial infections, and skeletal abnormalities due to cytokine-selective loss of function in GP130, with defective IL-6 and IL-11 and variable oncostatin M (OSM) and IL-27 levels but sparing leukemia inhibitory factor (LIF) signaling. OBJECTIVE: Our aim was to understand the functional and structural impact of recessive HIES-associated IL6ST variants. METHODS: We investigated a patient with HIES by using exome, genome, and RNA sequencing. Functional assays assessed IL-6, IL-11, IL-27, OSM, LIF, CT-1, CLC, and CNTF signaling. Molecular dynamics simulations and structural modeling of GP130 cytokine receptor complexes were performed. RESULTS: We identified a patient with compound heterozygous novel missense variants in IL6ST (p.Ala517Pro and the exon-skipping null variant p.Gly484_Pro518delinsArg). The p.Ala517Pro variant resulted in a more profound IL-6- and IL-11-dominated signaling defect than did the previously identified recessive HIES IL6ST variants p.Asn404Tyr and p.Pro498Leu. Molecular dynamics simulations suggested that the p.Ala517Pro and p.Asn404Tyr variants result in increased flexibility of the extracellular membrane-proximal domains of GP130. We propose a structural model that explains the cytokine selectivity of pathogenic IL6ST variants that result in recessive HIES. The variants destabilized the conformation of the hexameric cytokine receptor complexes, whereas the trimeric LIF-GP130-LIFR complex remained stable through an additional membrane-proximal interaction. Deletion of this membrane-proximal interaction site in GP130 consequently caused additional defective LIF signaling and Stüve-Wiedemann syndrome. CONCLUSION: Our data provide a structural basis to understand clinical phenotypes in patients with IL6ST variants.


Assuntos
Receptor gp130 de Citocina , Síndrome de Job , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Criança , Receptor gp130 de Citocina/química , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/imunologia , Citocinas/genética , Citocinas/imunologia , Genes Recessivos , Humanos , Síndrome de Job/genética , Síndrome de Job/imunologia , Masculino , RNA-Seq , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Sequenciamento do Exoma
12.
J Hepatol ; 74(2): 407-418, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32987028

RESUMO

BACKGROUND & AIMS: Interleukin (IL)-6 cytokine family members contribute to inflammatory and regenerative processes. Engagement of the signaling receptor subunit gp130 is common to almost all members of the family. In the liver, all major cell types respond to IL-6-type cytokines, making it difficult to delineate cell type-specific effects. We therefore generated mouse models for liver cell type-specific analysis of IL-6 signaling. METHODS: We produced mice with a Cre-inducible expression cassette encoding a designed pre-dimerized constitutive active gp130 variant. We bred these mice to different Cre-drivers to induce transgenic gp130 signaling in distinct liver cell types: hepatic stellate cells, cholangiocytes/liver progenitor cells or hepatocytes. We phenotyped these mice using multi-omics approaches, immunophenotyping and a bacterial infection model. RESULTS: Hepatocyte-specific gp130 activation led to the upregulation of innate immune system components, including acute-phase proteins. Consequently, we observed peripheral mobilization and recruitment of myeloid cells to the liver. Hepatic myeloid cells, including liver-resident Kupffer cells were instructed to adopt a bactericidal phenotype which ultimately conferred enhanced resistance to bacterial infection in these mice. We demonstrate that persistent hepatocyte-specific gp130 activation resulted in amyloid A amyloidosis in aged mice. In contrast, we did not observe overt effects of hepatic stellate cell- or cholangiocyte/liver progenitor cell-specific transgenic gp130 signaling. CONCLUSIONS: Hepatocyte-specific gp130 activation alone is sufficient to trigger a robust innate immune response in the absence of NF-κB activation. We therefore conclude that gp130 engagement, e.g. by IL-6 trans-signaling, represents a safe-guard mechanism in innate immunity. LAY SUMMARY: Members of the interleukin-6 cytokine family signal via the receptor subunit gp130 and are involved in multiple processes in the liver. However, as several liver cell types respond to interleukin-6 family cytokines, it is difficult to delineate cell type-specific effects. Using a novel mouse model, we provide evidence that hepatocyte-specific gp130 activation is sufficient to trigger a robust systemic innate immune response.


Assuntos
Receptor gp130 de Citocina/metabolismo , Hepatócitos/metabolismo , Imunidade Inata/fisiologia , Interleucina-6/imunologia , Fígado , Fator de Transcrição STAT3/metabolismo , Reação de Fase Aguda/imunologia , Animais , Hepatócitos/classificação , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Transdução de Sinais/imunologia
13.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003568

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is a member of the class III receptor tyrosine kinases (RTK) and is involved in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Oncogenic mutations in the FLT3 gene resulting in constitutively active FLT3 variants are frequently found in acute myeloid leukaemia (AML) patients and correlate with patient's poor survival. Targeting FLT3 mutant leukaemic stem cells (LSC) is a key to efficient treatment of patients with relapsed/refractory AML. It is therefore essential to understand how LSC escape current therapies in order to develop novel therapeutic strategies. Here, we summarize the current knowledge on mechanisms of FLT3 activity regulation and its cellular consequences. Furthermore, we discuss how aberrant FLT3 signalling cooperates with other oncogenic lesions and the microenvironment to drive haematopoietic malignancies and how this can be harnessed for therapeutical purposes.

14.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698506

RESUMO

Tumour growth is not solely driven by tumour cell-intrinsic mechanisms, but also depends on paracrine signals provided by the tumour micro-environment. These signals comprise cytokines and growth factors that are synthesized as trans-membrane proteins and need to be liberated by limited proteolysis also termed ectodomain shedding. Members of the family of A disintegrin and metalloproteases (ADAM) are major mediators of ectodomain shedding and therefore initiators of paracrine signal transduction. In this review, we summarize the current knowledge on how ADAM proteases on tumour cells but also on cells of the tumour micro-environment contribute to the formation of gastrointestinal tumours, and discuss how these processes can be exploited pharmacologically.


Assuntos
Proteínas ADAM/metabolismo , Neoplasias Gastrointestinais/metabolismo , Transdução de Sinais , Proteínas ADAM/antagonistas & inibidores , Animais , Citocinas/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Humanos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
15.
Bone Res ; 8: 24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566365

RESUMO

The GP130 cytokine receptor subunit encoded by IL6ST is the shared receptor for ten cytokines of the IL-6 family. We describe a homozygous non-synonymous variant in IL6ST (p.R281Q) in a patient with craniosynostosis and retained deciduous teeth. We characterize the impact of the variant on cytokine signaling in vitro using transfected cell lines as well as primary patient-derived cells and support these findings using a mouse model with the corresponding genome-edited variant Il6st p.R279Q. We show that human GP130 p.R281Q is associated with selective loss of IL-11 signaling without affecting IL-6, IL-27, OSM, LIF, CT1, CLC, and CNTF signaling. In mice Il6st p.R279Q lowers litter size and causes facial synostosis and teeth abnormalities. The effect on IL-11 signaling caused by the GP130 variant shows incomplete penetrance but phenocopies aspects of IL11RA deficiency in humans and mice. Our data show that a genetic variant in a pleiotropic cytokine receptor can have remarkably selective defects.

16.
Trends Mol Med ; 26(9): 833-847, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593582

RESUMO

Activating mutations in genes encoding receptor tyrosine kinases (RTKs) mediate proliferation, cell migration, and cell survival, and are therefore important drivers of oncogenesis. Numerous targeted cancer therapies are directed against activated RTKs, including small compound inhibitors, and immunotherapies. It has recently been discovered that not only certain RTK fusion proteins, but also many full-length RTKs harbouring activating mutations, notably RTKs of the class III family, are to a large extent mislocalised in intracellular membranes. Active kinases in these locations cause aberrant activation of signalling pathways. Moreover, low levels of activated RTKs at the cell surface present an obstacle for immunotherapy. We outline here why understanding of the mechanisms underlying mislocalisation will help in improving existing and developing novel therapeutic strategies.


Assuntos
Neoplasias/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Membrana Celular/genética , Humanos , Mutação/genética , Transdução de Sinais/genética
17.
Cell Mol Life Sci ; 77(2): 331-350, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31209506

RESUMO

Disintegrin and metalloproteinases (ADAMs) 10 and 17 can release the extracellular part of a variety of membrane-bound proteins via ectodomain shedding important for many biological functions. So far, substrate identification focused exclusively on membrane-anchored ADAM10 and ADAM17. However, besides known shedding of ADAM10, we identified ADAM8 as a protease capable of releasing the ADAM17 ectodomain. Therefore, we investigated whether the soluble ectodomains of ADAM10/17 (sADAM10/17) exhibit an altered substrate spectrum compared to their membrane-bound counterparts. A mass spectrometry-based N-terminomics approach identified 134 protein cleavage events in total and 45 common substrates for sADAM10/17 within the secretome of murine cardiomyocytes. Analysis of these cleavage sites confirmed previously identified amino acid preferences. Further in vitro studies verified fibronectin, cystatin C, sN-cadherin, PCPE-1 as well as sAPP as direct substrates of sADAM10 and/or sADAM17. Overall, we present the first degradome study for sADAM10/17, thereby introducing a new mode of proteolytic activity within the protease web.


Assuntos
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Miócitos Cardíacos/metabolismo
18.
Gut ; 69(6): 1064-1075, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31586932

RESUMO

OBJECTIVE: Failing to properly repair damaged DNA drives the ageing process. Furthermore, age-related inflammation contributes to the manifestation of ageing. Recently, we demonstrated that the efficiency of repair of diethylnitrosamine (DEN)-induced double-strand breaks (DSBs) rapidly declines with age. We therefore hypothesised that with age, the decline in DNA damage repair stems from age-related inflammation. DESIGN: We used DEN-induced DNA damage in mouse livers and compared the efficiency of their resolution in different ages and following various permutations aimed at manipulating the liver age-related inflammation. RESULTS: We found that age-related deregulation of innate immunity was linked to altered gut microbiota. Consequently, antibiotic treatment, MyD88 ablation or germ-free mice had reduced cytokine expression and improved DSBs rejoining in 6-month-old mice. In contrast, feeding young mice with a high-fat diet enhanced inflammation and facilitated the decline in DSBs repair. This latter effect was reversed by antibiotic treatment. Kupffer cell replenishment or their inactivation with gadolinium chloride reduced proinflammatory cytokine expression and reversed the decline in DSBs repair. The addition of proinflammatory cytokines ablated DSBs rejoining mediated by macrophage-derived heparin-binding epidermal growth factor-like growth factor. CONCLUSIONS: Taken together, our results reveal a previously unrecognised link between commensal bacteria-induced inflammation that results in age-dependent decline in DNA damage repair. Importantly, the present study support the notion of a cell non-autonomous mechanism for age-related decline in DNA damage repair that is based on the presence of 'inflamm-ageing' cytokines in the tissue microenvironment, rather than an intrinsic cellular deficiency in the DNA repair machinery.


Assuntos
Citocinas/fisiologia , Reparo do DNA , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Envelhecimento/fisiologia , Animais , Antibacterianos/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Dietilnitrosamina/farmacologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata , Fígado/imunologia , Fígado/metabolismo , Camundongos
19.
Cells ; 8(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31601007

RESUMO

Fibrosis in the liver is mainly associated with the activation of hepatic stellate cells (HSCs). Both activation and clearance of HSCs can be mediated by ligand-receptor interactions. Members of the a disintegrin and metalloprotease (ADAM) family are involved in the proteolytic release of membrane-bound ligands and receptor ectodomains and the remodelling of the extracellular matrix. ADAM proteases are therefore major regulators of intercellular signalling pathways. In the present review we discuss how ADAM proteases modulate pro- and anti-fibrotic processes and how ADAM proteases might be harnessed therapeutically in the future.


Assuntos
Proteínas ADAM/metabolismo , Cirrose Hepática/enzimologia , Matriz Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/patologia , Transdução de Sinais
20.
Sci Rep ; 8(1): 16238, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389969

RESUMO

Multi drug resistance protein 2 knockout mice (Mdr2-/-) are a mouse model of chronic liver inflammation and inflammation-induced tumour development. Here we investigated the kinetics of early heme oxygenase 1 (HO-1) induction on inflammation, tumour development, and DNA damage in Mdr2-/- mice. HO-1 was induced by intraperitoneal injection of cobalt protoporphyrin IX (CoPP) twice weekly for 9 consecutive weeks. Immediately after HO-1 induction, liver function improved and infiltration of CD4+ and CD8+ T cells was reduced. Furthermore, we observed increased p38 activation with concomitant reduction of Cyclin D1 expression in aged Mdr2-/- mice. Long-term effects of HO-1 induction included increased CD8+ T cell infiltration as well as delayed and reduced tumour growth in one-year-old animals. Unexpectedly, DNA double-strand breaks were detected predominantly in macrophages of 65-week-old Mdr2-/- mice, while DNA damage was reduced in response to early HO-1 induction in vivo and in vitro. Overall, early induction of HO-1 in Mdr2-/- mice had a beneficial short-term effect on liver function and reduced hepatic T cell accumulation. Long-term effects of early HO-1 induction were increased CD8+ T cell numbers, decreased proliferation as wells as reduced DNA damage in liver macrophages of aged animals, accompanied by delayed and reduced tumour growth.


Assuntos
Reparo do DNA/efeitos dos fármacos , Ativadores de Enzimas/administração & dosagem , Heme Oxigenase-1/metabolismo , Hepatite/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle , Proteínas de Membrana/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Dano ao DNA , Modelos Animais de Doenças , Feminino , Hepatite/genética , Hepatite/imunologia , Hepatite/patologia , Humanos , Injeções Intraperitoneais , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Protoporfirinas/administração & dosagem , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA