Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
medRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798542

RESUMO

Leveraging data from multiple ancestries can greatly improve fine-mapping power due to differences in linkage disequilibrium and allele frequencies. We propose MultiSuSiE, an extension of the sum of single effects model (SuSiE) to multiple ancestries that allows causal effect sizes to vary across ancestries based on a multivariate normal prior informed by empirical data. We evaluated MultiSuSiE via simulations and analyses of 14 quantitative traits leveraging whole-genome sequencing data in 47k African-ancestry and 94k European-ancestry individuals from All of Us. In simulations, MultiSuSiE applied to Afr47k+Eur47k was well-calibrated and attained higher power than SuSiE applied to Eur94k; interestingly, higher causal variant PIPs in Afr47k compared to Eur47k were entirely explained by differences in the extent of LD quantified by LD 4th moments. Compared to very recently proposed multi-ancestry fine-mapping methods, MultiSuSiE attained higher power and/or much lower computational costs, making the analysis of large-scale All of Us data feasible. In real trait analyses, MultiSuSiE applied to Afr47k+Eur94k identified 579 fine-mapped variants with PIP > 0.5, and MultiSuSiE applied to Afr47k+Eur47k identified 44% more fine-mapped variants with PIP > 0.5 than SuSiE applied to Eur94k. We validated MultiSuSiE results for real traits via functional enrichment of fine-mapped variants. We highlight several examples where MultiSuSiE implicates well-studied or biologically plausible fine-mapped variants that were not implicated by other methods.

2.
medRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106023

RESUMO

The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.

3.
Res Sq ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168385

RESUMO

The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.

4.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515579

RESUMO

The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite the availability of gene expression and epigenomic datasets, few variant-to-gene links have emerged. It is unclear whether these sparse results are due to limitations in available data and methods, or to deficiencies in the underlying assumed model. To better distinguish between these possibilities, we identified 220 gene-trait pairs in which protein-coding variants influence a complex trait or its Mendelian cognate. Despite the presence of expression quantitative trait loci near most GWAS associations, by applying a gene-based approach we found limited evidence that the baseline expression of trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory annotations and distance (4% of genes implicated). These results contradict the hypothesis that most complex trait-associated variants coincide with homeostatic expression QTLs, suggesting that better models are needed. The field must confront this deficit and pursue this 'missing regulation.'


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Herança Multifatorial/genética , Epigenômica , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
5.
Nat Genet ; 54(6): 827-836, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668300

RESUMO

Disease-associated single-nucleotide polymorphisms (SNPs) generally do not implicate target genes, as most disease SNPs are regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory SNPs to the genes that they regulate in cis. Here, we developed a heritability-based framework for evaluating and combining different S2G strategies to optimize their informativeness for common disease risk. Our optimal combined S2G strategy (cS2G) included seven constituent S2G strategies and achieved a precision of 0.75 and a recall of 0.33, more than doubling the recall of any individual strategy. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 5,095 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high confidence. We further applied cS2G to provide an empirical assessment of disease omnigenicity; we determined that the top 1% of genes explained roughly half of the SNP heritability linked to all genes and that gene-level architectures vary with variant allele frequency.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
6.
Nat Genet ; 54(4): 450-458, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393596

RESUMO

Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
7.
Am J Hum Genet ; 109(4): 692-709, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271803

RESUMO

Recent works have shown that SNP heritability-which is dominated by low-effect common variants-may not be the most relevant quantity for localizing high-effect/critical disease genes. Here, we introduce methods to estimate the proportion of phenotypic variance explained by a given assignment of SNPs to a single gene ("gene-level heritability"). We partition gene-level heritability by minor allele frequency (MAF) to find genes whose gene-level heritability is explained exclusively by "low-frequency/rare" variants (0.5% ≤ MAF < 1%). Applying our method to ∼16K protein-coding genes and 25 quantitative traits in the UK Biobank (N = 290K "White British"), we find that, on average across traits, ∼2.5% of nonzero-heritability genes have a rare-variant component and only ∼0.8% (327 gene-trait pairs) have heritability exclusively from rare variants. Of these 327 gene-trait pairs, 114 (35%) were not detected by existing gene-level association testing methods. The additional genes we identify are significantly enriched for known disease genes, and we find several examples of genes that have been previously implicated in phenotypically related Mendelian disorders. Notably, the rare-variant component of gene-level heritability exhibits trends different from those of common-variant gene-level heritability. For example, while total gene-level heritability increases with gene length, the rare-variant component is significantly larger among shorter genes; the cumulative distributions of gene-level heritability also vary across traits and reveal differences in the relative contributions of rare/common variants to overall gene-level polygenicity. While nonzero gene-level heritability does not imply causality, if interpreted in the correct context, gene-level heritability can reveal useful insights into complex-trait genetic architecture.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Frequência do Gene/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
8.
Am J Hum Genet ; 109(3): 393-404, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35108496

RESUMO

Identifying gene sets that are associated to disease can provide valuable biological knowledge, but a fundamental challenge of gene set analyses of GWAS data is linking disease-associated SNPs to genes. Transcriptome-wide association studies (TWASs) detect associations between the genetically predicted expression of a gene and disease risk, thus implicating candidate disease genes. However, causal disease genes at TWAS-associated loci generally remain unknown due to gene co-regulation, which leads to correlations across genes in predicted expression. We developed a method, gene co-regulation score (GCSC) regression, to identify gene sets that are enriched for disease heritability explained by predicted expression. GCSC regresses TWAS chi-square statistics on gene co-regulation scores reflecting correlations in predicted gene expression; a gene set is enriched for heritability if genes with high co-regulation to the set have higher TWAS chi-square statistics than genes with low co-regulation to the set, beyond what is expected based on co-regulation to all genes. We verified via simulations that GCSC is well calibrated and well powered. We applied GCSC to gene expression data from GTEx (48 tissues) and GWAS summary statistics for 43 independent diseases and complex traits analyzing a broad set of biological pathways and specifically expressed gene sets. We identified many enriched sets, recapitulating known biology. For Alzheimer disease, we detected evidence of an immune basis, and specifically a role for antigen presentation, in analyses of both biological pathways and specifically expressed gene sets. Our results highlight the advantages of leveraging gene co-regulation within the TWAS framework to identify enriched gene sets.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Predisposição Genética para Doença , Humanos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Transcriptoma
9.
Genome Biol ; 22(1): 249, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446078

RESUMO

Aligning sequencing reads onto a reference is an essential step of the majority of genomic analysis pipelines. Computational algorithms for read alignment have evolved in accordance with technological advances, leading to today's diverse array of alignment methods. We provide a systematic survey of algorithmic foundations and methodologies across 107 alignment methods, for both short and long reads. We provide a rigorous experimental evaluation of 11 read aligners to demonstrate the effect of these underlying algorithms on speed and efficiency of read alignment. We discuss how general alignment algorithms have been tailored to the specific needs of various domains in biology.


Assuntos
Algoritmos , Biologia Computacional/métodos , Alinhamento de Sequência , Genoma Humano , HIV/fisiologia , Humanos , Metagenômica , Sulfitos
10.
Arthritis Rheumatol ; 73(10): 1944-1945, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33881221
11.
Eur Respir J ; 58(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33766948

RESUMO

BACKGROUND: Lung function is a heritable complex phenotype with obesity being one of its important risk factors. However, knowledge of their shared genetic basis is limited. Most genome-wide association studies (GWASs) for lung function have been based on European populations, limiting the generalisability across populations. Large-scale lung function GWASs in other populations are lacking. METHODS: We included 100 285 subjects from the China Kadoorie Biobank (CKB). To identify novel loci for lung function, single-trait GWAS analyses were performed on forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC in the CKB. We then performed genome-wide cross-trait analysis between lung function and obesity traits (body mass index (BMI), BMI-adjusted waist-to-hip ratio and BMI-adjusted waist circumference) to investigate the shared genetic effects in the CKB. Finally, polygenic risk scores (PRSs) of lung function were developed in the CKB and their interaction with BMI's association on lung function were examined. We also conducted cross-trait analysis in parallel with the CKB using up to 457 756 subjects from the UK Biobank (UKB) for replication and investigation of ancestry-specific effects. RESULTS: We identified nine genome-wide significant novel loci for FEV1, six for FVC and three for FEV1/FVC in the CKB. FEV1 and FVC showed significant negative genetic correlation with obesity traits in both the CKB and UKB. Genetic loci shared between lung function and obesity traits highlighted important biological pathways, including cell proliferation, embryo, skeletal and tissue development, and regulation of gene expression. Mendelian randomisation analysis suggested significant negative causal effects of BMI on FEV1 and on FVC in both the CKB and UKB. Lung function PRSs significantly modified the effect of change in BMI on change in lung function during an average follow-up of 8 years. CONCLUSION: This large-scale GWAS of lung function identified novel loci and shared genetic aetiology between lung function and obesity. Change in BMI might affect change in lung function differently according to a subject's polygenic background. These findings may open new avenues for the development of molecular-targeted therapies for obesity and lung function improvement.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Índice de Massa Corporal , China , Volume Expiratório Forçado , Humanos , Pulmão , Obesidade/genética
12.
Nat Commun ; 12(1): 1098, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597505

RESUMO

Many diseases exhibit population-specific causal effect sizes with trans-ethnic genetic correlations significantly less than 1, limiting trans-ethnic polygenic risk prediction. We develop a new method, S-LDXR, for stratifying squared trans-ethnic genetic correlation across genomic annotations, and apply S-LDXR to genome-wide summary statistics for 31 diseases and complex traits in East Asians (average N = 90K) and Europeans (average N = 267K) with an average trans-ethnic genetic correlation of 0.85. We determine that squared trans-ethnic genetic correlation is 0.82× (s.e. 0.01) depleted in the top quintile of background selection statistic, implying more population-specific causal effect sizes. Accordingly, causal effect sizes are more population-specific in functionally important regions, including conserved and regulatory regions. In regions surrounding specifically expressed genes, causal effect sizes are most population-specific for skin and immune genes, and least population-specific for brain genes. Our results could potentially be explained by stronger gene-environment interaction at loci impacted by selection, particularly positive selection.


Assuntos
Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Seleção Genética , Algoritmos , Povo Asiático/genética , Genômica/métodos , Haplótipos/genética , Humanos , Modelos Genéticos , População Branca/genética
13.
Am J Hum Genet ; 108(1): 36-48, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33352115

RESUMO

Identifying and interpreting pleiotropic loci is essential to understanding the shared etiology among diseases and complex traits. A common approach to mapping pleiotropic loci is to meta-analyze GWAS summary statistics across multiple traits. However, this strategy does not account for the complex genetic architectures of traits, such as genetic correlations and heritabilities. Furthermore, the interpretation is challenging because phenotypes often have different characteristics and units. We propose PLEIO (Pleiotropic Locus Exploration and Interpretation using Optimal test), a summary-statistic-based framework to map and interpret pleiotropic loci in a joint analysis of multiple diseases and complex traits. Our method maximizes power by systematically accounting for genetic correlations and heritabilities of the traits in the association test. Any set of related phenotypes, binary or quantitative traits with different units, can be combined seamlessly. In addition, our framework offers interpretation and visualization tools to help downstream analyses. Using our method, we combined 18 traits related to cardiovascular disease and identified 13 pleiotropic loci, which showed four different patterns of associations.


Assuntos
Pleiotropia Genética/genética , Estudo de Associação Genômica Ampla/métodos , Doenças Cardiovasculares/genética , Predisposição Genética para Doença/genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
14.
Arthritis Rheumatol ; 73(2): 203-211, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32964675

RESUMO

OBJECTIVE: To investigate the association between obesity-related traits and risk of rheumatoid arthritis (RA). METHODS: We conducted genetic correlation analysis and a 2-sample Mendelian randomization (MR) study, using genome-wide genetic data based on >850,000 individuals of European ancestry. Summary statistics were collected from the largest genome-wide association study conducted to date for body mass index (BMI; n = 806,810), waist-to-hip ratio (WHR; n = 697,734), WHR adjusted for BMI (WHRadjBMI; n = 694,649), and RA (ncase = 14,361, ncontrol = 43,923). We conducted cross-trait linkage disequilibrium score regression and ρ-HESS analyses to quantify genetic correlation between pairs of traits (causal overlap). For each obesity-related exposure, we utilized independent, genome-wide significant single-nucleotide polymorphisms (P < 5 × 10-9 ) as instruments to perform MR analysis (causal relationship). We interrogated the causal relationship both in the general population and in a sex-specific manner and calculated odds ratios (ORs) and 95% confidence intervals (95% CIs). Sensitivity analyses were performed to validate MR model assumptions. RESULTS: Despite a negligible overall genetic correlation between the 3 obesity-related traits and RA, we found significant local genetic correlations at several regions on chromosome 6 (positions 28-29M, 30-35M, and 50-52M), highlighting a shared genetic basis. We further observed an increased risk of RA per SD increment (4.8 kg/m2 ) in genetically predicted BMI (OR 1.22 [95% CI 1.09-1.37]). The effect was consistent across sensitivity analyses and comparable between sexes (OR 1.22 [95% CI 1.04-1.44] in male subjects and 1.19 [95% CI 1.04-1.36] in female subjects). However, we did not find evidence supporting a causal role of either WHR (OR 0.98 [95% CI 0.84-1.14]) or WHRadjBMI (OR 0.90 [95% CI 0.79-1.04]) in RA. CONCLUSION: Genetically predicted BMI significantly increases RA risk. Future studies are needed to understand the biologic mechanisms underlying this link.


Assuntos
Artrite Reumatoide/genética , Índice de Massa Corporal , Tamanho Corporal/genética , Obesidade/genética , Relação Cintura-Quadril , Artrite Reumatoide/epidemiologia , Causalidade , Feminino , Humanos , Masculino , Análise da Randomização Mendeliana , Obesidade/epidemiologia , Razão de Chances , Polimorfismo de Nucleotídeo Único , População Branca
15.
Am J Hum Genet ; 106(6): 805-817, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442408

RESUMO

Despite strong transethnic genetic correlations reported in the literature for many complex traits, the non-transferability of polygenic risk scores across populations suggests the presence of population-specific components of genetic architecture. We propose an approach that models GWAS summary data for one trait in two populations to estimate genome-wide proportions of population-specific/shared causal SNPs. In simulations across various genetic architectures, we show that our approach yields approximately unbiased estimates with in-sample LD and slight upward-bias with out-of-sample LD. We analyze nine complex traits in individuals of East Asian and European ancestry, restricting to common SNPs (MAF > 5%), and find that most common causal SNPs are shared by both populations. Using the genome-wide estimates as priors in an empirical Bayes framework, we perform fine-mapping and observe that high-posterior SNPs (for both the population-specific and shared causal configurations) have highly correlated effects in East Asians and Europeans. In population-specific GWAS risk regions, we observe a 2.8× enrichment of shared high-posterior SNPs, suggesting that population-specific GWAS risk regions harbor shared causal SNPs that are undetected in the other GWASs due to differences in LD, allele frequencies, and/or sample size. Finally, we report enrichments of shared high-posterior SNPs in 53 tissue-specific functional categories and find evidence that SNP-heritability enrichments are driven largely by many low-effect common SNPs.


Assuntos
Etnicidade/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Teorema de Bayes , Europa (Continente)/etnologia , Ásia Oriental/etnologia , Frequência do Gene , Humanos , Desequilíbrio de Ligação , Especificidade de Órgãos/genética
16.
J Allergy Clin Immunol ; 145(2): 537-549, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669095

RESUMO

BACKGROUND: Clinical and epidemiologic studies have shown that obesity is associated with asthma and that these associations differ by asthma subtype. Little is known about the shared genetic components between obesity and asthma. OBJECTIVE: We sought to identify shared genetic associations between obesity-related traits and asthma subtypes in adults. METHODS: A cross-trait genome-wide association study (GWAS) was performed using 457,822 subjects of European ancestry from the UK Biobank. Experimental evidence to support the role of genes significantly associated with both obesity-related traits and asthma through a GWAS was sought by using results from obese versus lean mouse RNA sequencing and RT-PCR experiments. RESULTS: We found a substantial positive genetic correlation between body mass index and later-onset asthma defined by asthma age of onset at 16 years or greater (Rg = 0.25, P = 9.56 × 10-22). Mendelian randomization analysis provided strong evidence in support of body mass index causally increasing asthma risk. Cross-trait meta-analysis identified 34 shared loci among 3 obesity-related traits and 2 asthma subtypes. GWAS functional analyses identified potential causal relationships between the shared loci and Genotype-Tissue Expression (GTEx) quantitative trait loci and shared immune- and cell differentiation-related pathways between obesity and asthma. Finally, RNA sequencing data from lungs of obese versus control mice found that 2 genes (acyl-coenzyme A oxidase-like [ACOXL] and myosin light chain 6 [MYL6]) from the cross-trait meta-analysis were differentially expressed, and these findings were validated by using RT-PCR in an independent set of mice. CONCLUSIONS: Our work identified shared genetic components between obesity-related traits and specific asthma subtypes, reinforcing the hypothesis that obesity causally increases the risk of asthma and identifying molecular pathways that might underlie both obesity and asthma.


Assuntos
Asma/genética , Predisposição Genética para Doença/genética , Obesidade/genética , Adulto , Animais , Bancos de Espécimes Biológicos , Índice de Massa Corporal , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Reino Unido
17.
Eur Respir J ; 54(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619474

RESUMO

Epidemiological studies demonstrate an association between asthma and mental health disorders, although little is known about the shared genetics and causality of this association. Thus, we aimed to investigate shared genetics and the causal link between asthma and mental health disorders.We conducted a large-scale genome-wide cross-trait association study to investigate genetic overlap between asthma from the UK Biobank and eight mental health disorders from the Psychiatric Genomics Consortium: attention deficit hyperactivity disorder (ADHD), anxiety disorder (ANX), autism spectrum disorder, bipolar disorder, eating disorder, major depressive disorder (MDD), post-traumatic stress disorder and schizophrenia (sample size 9537-394 283).In the single-trait genome-wide association analysis, we replicated 130 previously reported loci and discovered 31 novel independent loci that are associated with asthma. We identified that ADHD, ANX and MDD have a strong genetic correlation with asthma at the genome-wide level. Cross-trait meta-analysis identified seven loci jointly associated with asthma and ADHD, one locus with asthma and ANX, and 10 loci with asthma and MDD. Functional analysis revealed that the identified variants regulated gene expression in major tissues belonging to the exocrine/endocrine, digestive, respiratory and haemic/immune systems. Mendelian randomisation analyses suggested that ADHD and MDD (including 6.7% sample overlap with asthma) might increase the risk of asthma.This large-scale genome-wide cross-trait analysis identified shared genetics and potential causal links between asthma and three mental health disorders (ADHD, ANX and MDD). Such shared genetics implicate potential new biological functions that are in common among them.


Assuntos
Transtornos de Ansiedade/genética , Asma/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Depressivo/genética , Adulto , Criança , Estudo de Associação Genômica Ampla , Humanos , Reino Unido
18.
Nat Genet ; 51(8): 1244-1251, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358995

RESUMO

SNP-heritability is a fundamental quantity in the study of complex traits. Recent studies have shown that existing methods to estimate genome-wide SNP-heritability can yield biases when their assumptions are violated. While various approaches have been proposed to account for frequency- and linkage disequilibrium (LD)-dependent genetic architectures, it remains unclear which estimates reported in the literature are reliable. Here we show that genome-wide SNP-heritability can be accurately estimated from biobank-scale data irrespective of genetic architecture, without specifying a heritability model or partitioning SNPs by allele frequency and/or LD. We show analytically and through extensive simulations starting from real genotypes (UK Biobank, N = 337 K) that, unlike existing methods, our closed-form estimator is robust across a wide range of architectures. We provide estimates of SNP-heritability for 22 complex traits in the UK Biobank and show that, consistent with our results in simulations, existing biobank-scale methods yield estimates up to 30% different from our theoretically-justified approach.


Assuntos
Bancos de Espécimes Biológicos/estatística & dados numéricos , Genoma Humano , Desequilíbrio de Ligação , Modelos Teóricos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Estudo de Associação Genômica Ampla , Humanos , Fenótipo
19.
Bioinformatics ; 35(22): 4837-4839, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173064

RESUMO

MOTIVATION: Multi-trait analyses using public summary statistics from genome-wide association studies (GWASs) are becoming increasingly popular. A constraint of multi-trait methods is that they require complete summary data for all traits. Although methods for the imputation of summary statistics exist, they lack precision for genetic variants with small effect size. This is benign for univariate analyses where only variants with large effect size are selected a posteriori. However, it can lead to strong p-value inflation in multi-trait testing. Here we present a new approach that improve the existing imputation methods and reach a precision suitable for multi-trait analyses. RESULTS: We fine-tuned parameters to obtain a very high accuracy imputation from summary statistics. We demonstrate this accuracy for variants of all effect sizes on real data of 28 GWAS. We implemented the resulting methodology in a python package specially designed to efficiently impute multiple GWAS in parallel. AVAILABILITY AND IMPLEMENTATION: The python package is available at: https://gitlab.pasteur.fr/statistical-genetics/raiss, its accompanying documentation is accessible here http://statistical-genetics.pages.pasteur.fr/raiss/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Software , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
20.
Nat Genet ; 51(4): 675-682, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926970

RESUMO

Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene-trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality.


Assuntos
Predisposição Genética para Doença/genética , Transcriptoma/genética , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação/genética , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Probabilidade , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA