Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Genet ; 15: 1380495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933925

RESUMO

Introduction: The single nucleotide polymorphism (SNP) rs4644 at codon 64 of galectin-3 (gal-3, gene name: LGALS3), specifying the variant proline (P64) to histidine (H64), is known to affect the protein's functions and has been associated with the risk of several types of cancer, including differentiated thyroid carcinoma (DTC). Materials and methods: To deepen our understanding of the biological effects of this SNP, we analyzed the proteome of two isogenic cell lines (NC-P64 vs. NA-H64) derived from the immortalized non-malignant thyrocyte cell line Nthy-Ori, generated through the CRISPR-Cas9 technique to differ by rs4644 genotype. We compared the proteome of these cells to detect differentially expressed proteins and studied their proteome in relation to their transcriptome. Results: Firstly, we found, consistently with previous studies, that gal-3-H64 could be detected as a monomer, homodimer, and heterodimer composed of one cleaved and one uncleaved monomer, whereas gal-3-P64 could be found only as a monomer or uncleaved homodimer. Moreover, results indicate that rs4644 influences the expression of several proteins, predominantly upregulated in NA-H64 cells. Overall, the differential protein expression could be attributed to the altered mRNA expression, suggesting that rs4644 shapes the function of gal-3 as a transcriptional co-regulator. However, this SNP also appeared to affect post-transcriptional regulatory mechanisms for proteins whose expression was oppositely regulated compared to mRNA expression. It is conceivable that the rs4644-dependent activities of gal-3 could be ascribed to the different modalities of self-dimerization. Conclusion: Our study provided further evidence that rs4644 could affect the gal-3 functions through several routes, which could be at the base of differential susceptibility to diseases, as reported in case-control association studies.

2.
Eur J Med Chem ; 248: 115112, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641860

RESUMO

Triple negative breast cancer (TNBC) is a specific breast cancer subtype, and poor prognosis is associated to this tumour when it is in the metastatic form. The overexpression of the inducible Nitric Oxide Synthase (iNOS) is considered a predictor of poor outcome in TNBC patients, and this enzyme is reported as a valuable molecular target to compromise TNBC progression. In this work, new amidines containing a benzenesulfonamide group were designed and synthesized as selective iNOS inhibitors. An in vitro biological evaluation was performed to assess compounds activity against both the inducible and constitutive NOSs. The most interesting compounds 1b and 2b were evaluated on MDA-MB-231 cells as antiproliferative agents, and 1b capability to counteract cell migration was also studied. Finally, an in-depth docking study was performed to shed light on the observed potency and selectivity of action of the most promising compounds.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Óxido Nítrico Sintase Tipo II , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Amidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Benzenossulfonamidas
3.
Cell Mol Neurobiol ; 43(5): 1941-1956, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36056992

RESUMO

Alzheimer disease (AD) is a multifactorial and age-dependent neurodegenerative disorder, whose pathogenesis, classically associated with the formation of senile plaques and neurofibrillary tangles, is also dependent on oxidative stress and neuroinflammation chronicization. Currently, the standard symptomatic therapy, based on acetylcholinesterase inhibitors, showed a limited therapeutic potential, whereas disease-modifying treatment strategies are still under extensive research. Previous studies have demonstrated that Oxotremorine-M (Oxo), a non-selective muscarinic acetylcholine receptors agonist, exerts neurotrophic functions in primary neurons, and modulates oxidative stress and neuroinflammation phenomena in rat brain. In the light of these findings, in this study, we aimed to investigate the neuroprotective effects of Oxo treatment in an in vitro model of AD, represented by differentiated SH-SY5Y neuroblastoma cells exposed to Aß1-42 peptide. The results demonstrated that Oxo treatment enhances cell survival, increases neurite length, and counteracts DNA fragmentation induced by Aß1-42 peptide. The same treatment was also able to block oxidative stress and mitochondria morphological/functional impairment associated with Aß1-42 cell exposure. Overall, these results suggest that Oxo, by modulating cholinergic neurotransmission, survival, oxidative stress response, and mitochondria functionality, may represent a novel multi-target drug able to achieve a therapeutic synergy in AD. Illustration of the main pathological hallmarks and mechanisms underlying AD pathogenesis, including neurodegeneration and oxidative stress, efficiently counteracted by treatment with Oxo, which may represent a promising therapeutic molecule. Created with BioRender.com under academic license.


Assuntos
Doença de Alzheimer , Neuroblastoma , Ratos , Animais , Humanos , Antioxidantes/farmacologia , Doença de Alzheimer/tratamento farmacológico , Oxotremorina/farmacologia , Doenças Neuroinflamatórias , Acetilcolinesterase , Peptídeos beta-Amiloides , Neuroblastoma/patologia , Receptores Muscarínicos
4.
Multidiscip Respir Med ; 15(1): 713, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33117535

RESUMO

BACKGROUND: To date, the effects of COVID-19 pneumonia on health-related quality of life (HRQoL) and dyspnoea are unknown. METHODS: In a real-life observational study, 20 patients with COVID-19-related pneumonia received usual care plus erdosteine (300 mg twice daily) for 15 days after hospital discharge following local standard operating procedures. At discharge (T0) and on Day 15 (T1), participants completed the St George's Respiratory Questionnaire (SGRQ), the modified Medical Research Council (mMRC) scale of dyspnoea during daily activity, the BORG scale for dyspnoea during exertion, and Visual Analogue Scale (VAS) for dyspnoea at rest. Paired t-tests compared scores at T0 and T1. RESULTS: The mean (SD) SGRQ total score decreased from 25.5 (15.5) at T0 to 16.9 (13.2) at T1 (p<0.01); 65% of patients achieved a clinically important change of ≥4 points. SGRQ domain scores (symptoms, activity, and impact) were also significantly reduced (all p<0.01). The mean (SD) VAS score decreased from 1.6 (1.7) to 1.4 (2.5); p<0.01. The mean mMRC score decreased significantly (p=0.031) and 30% of patients achieved a clinically important change of ≥1 point. The mean (SD) Borg score increased from 12.8 (4.2) to 14.3 (2.4); p<0.01. CONCLUSION: The present proof of concept study is the first to report HRQoL in patients with COVID-19. During 15 days after hospital discharge, patients reported significant improvements in HRQoL and dyspnoea at rest and during daily activities.

5.
J Ultrasound ; 20(3): 243-245, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28900525

RESUMO

A 36-year-old man was admitted to the emergency department of "SS Annunziata" hospital in Chieti complaining of a sharp chest pain arisen some hours before admission. On examination, the patient looked sweaty; his vital signs showed tachycardia and augmented breath rate; sinus tachycardia and normal ventricular repolarization were observed on ECG, and no abnormalities were observed in the echoscan of the hearth. According to the clinical and electrocardiographic findings, and to previous episode of DVT in anamnesis, a thorax CT scan was performed in order to rule out pulmonary embolism. It showed an "area of parenchymal consolidation involving almost all the left lower lobe with patent bronchial structures"; given the patient's CURB 65 score, he was then admitted to the pneumology ward where empiric treatment with levofloxacin (750 mg PO once daily) was initiated. Thoracic ultrasound was performed using a multifrequency convex transducer, and the posterior left area was examined through intercostal approach, placing the patient in a sitting position. A subpleural patchy hypoechoic lesion with irregular boundaries was detected; the maximum diameter was 11 cm, and the multiple hyperechoic spots inside it (elsewhere defined as "air bronchogram") showed no Doppler signal. Given the positive result of the Legionella urinary antigen test, antibiotic treatment was switched to Levofloxacin 1000 mg PO once daily and Claritromicin 500 mg PO twice daily. After 3 days, his clinical conditions improved dramatically. Ultrasound performed after 5 days from the diagnosis showed decreased dimensions of the lesion previously identified (maximum diameter 8.25 cm) and a marked reduction of the hyperechoic spots in it. The patient was discharged in good clinical conditions, and both thorax CT scan obtained after 1 and 4 months from the diagnosis showed radiological resolution of the parenchymal consolidation. The key to ultrasound visualization of pneumonia is its contact with the pleural surface (86-98% in cases of CAP) and the relative loss of aeration of the portion involved by the infection and a concomitant increase in the fluid content. A paradigmatic US image for parenchymal inflammatory infiltrate has not been established yet; anyway, some typical findings, when combined with the clinical features, can confirm the diagnostic hypothesis.


Assuntos
Doença dos Legionários/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Ultrassonografia , Adulto , Antibacterianos/uso terapêutico , Diagnóstico Diferencial , Humanos , Legionella pneumophila , Doença dos Legionários/sangue , Doença dos Legionários/tratamento farmacológico , Masculino , Tronco/diagnóstico por imagem , Resultado do Tratamento
6.
Sci Rep ; 6: 25960, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27180807

RESUMO

The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3ß phosphorylation and ß-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1(G93A) ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Nervo Oculomotor/metabolismo , Receptores de Somatomedina/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Nervo Oculomotor/citologia , Fosforilação , Fatores de Proteção , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1 , beta Catenina/metabolismo
7.
Cell Mol Life Sci ; 73(5): 1003-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26681261

RESUMO

Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. Even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It has been demonstrated that non-motor neuronal cells are also involved in disease pathogenesis and could have important therapeutic implications. For these reasons it will be crucial to take this evidence into account for the clinical translation of the novel therapeutic approaches.


Assuntos
Células Musculares/patologia , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/terapia , Neuroglia/patologia , Neurônios/patologia , Células de Schwann/patologia , Animais , Osso e Ossos/patologia , Humanos , Sistema Imunitário/patologia , Fígado/patologia , Neurônios Motores/patologia , Atrofia Muscular Espinal/complicações , Miocárdio/patologia , Pâncreas/patologia
8.
Sci Adv ; 1(2): e1500078, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26601156

RESUMO

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease affecting children. It is caused by mutations in the IGHMBP2 gene (11q13) and presently has no cure. Recently, adeno-associated virus serotype 9 (AAV9)-mediated gene therapy has been shown to rescue the phenotype of animal models of another lower motor neuron disorder, spinal muscular atrophy 5q, and a clinical trial with this strategy is ongoing. We report rescue of the disease phenotype in a SMARD1 mouse model after therapeutic delivery via systemic injection of an AAV9 construct encoding the wild-type IGHMBP2 to replace the defective gene. AAV9-IGHMBP2 administration restored protein levels and rescued motor function, neuromuscular physiology, and life span (450% increase), ameliorating pathological features in the central nervous system, muscles, and heart. To test this strategy in a human model, we transferred wild-type IGHMBP2 into human SMARD1-induced pluripotent stem cell-derived motor neurons; these cells exhibited increased survival and axonal length in long-term culture. Our data support the translational potential of AAV-mediated gene therapies for SMARD1, opening the door for AAV9-mediated therapy in human clinical trials.

9.
J Neurol Sci ; 356(1-2): 7-18, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26143526

RESUMO

Mitofusin 2 (MFN2) is a GTPase dynamin-like protein of the outer mitochondrial membrane, encoded in the nuclear genome by the MFN2 gene located on the short (p) arm of chromosome 1. MFN2 protein is involved in several intracellular pathways, but is mainly involved in a network that has an essential role in several mitochondrial functions, including fusion, axonal transport, interorganellar communication and mitophagy. Mutations in the gene encoding MFN2 are associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a wide clinical phenotype that involves the central and peripheral nervous system. Here, we present the clinical, genetic and neuropathological features of human diseases associated with MFN2 mutations. We also report proposed pathogenic mechanisms through which MFN2 mutations likely contribute to the development of neurodegeneration. MFN2-related disorders may occur more frequently than previously considered, and they may represent a paradigm for the study of the defective mitochondrial dynamics that seem to play a significant role in the molecular and cellular pathogenesis of common neurodegenerative diseases; thus they may also lead to the identification of related therapeutic targets.


Assuntos
Doença de Charcot-Marie-Tooth , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/genética , Mutação/genética , Neurônios/patologia , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/terapia , GTP Fosfo-Hidrolases/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Fenótipo
10.
Sci Rep ; 5: 11746, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123042

RESUMO

Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders.


Assuntos
Neurônios Motores/metabolismo , Atrofia Muscular Espinal/terapia , Sequência de Bases , Sobrevivência Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Terapia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Morfolinos/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Fenótipo , Regiões Promotoras Genéticas , RNA Nuclear Pequeno/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Fatores de Transcrição/genética
11.
Clin Ther ; 37(3): 668-80, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25666449

RESUMO

PURPOSE: Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. It is almost invariably lethal within a few years after the onset of symptoms. No effective treatment is currently available beyond supportive care and riluzole, a putative glutamate release blocker linked to modestly prolonged survival. This review provides a general overview of preclinical and clinical advances during recent years and summarizes the literature regarding emerging therapeutic approaches, focusing on their molecular targets. METHODS: A systematic literature review of PubMed was performed, identifying key clinical trials involving molecular therapies for ALS. In addition, the ALS Therapy Development Institute website was carefully analyzed, and a selection of ALS clinical trials registered at ClinicalTrials.gov has been included. FINDINGS: In the last several years, strategies have been developed to understand both the genetic and molecular mechanisms of ALS. Several therapeutic targets have been actively pursued, including kinases, inflammation inhibitors, silencing of key genes, and modulation or replacement of specific cell populations. The majority of ongoing clinical trials are investigating the safety profiles and tolerability of pharmacologic, gene, and cellular therapies, and have begun to assess their effects on ALS progression. IMPLICATIONS: Currently, no therapeutic effort seems to be efficient, but recent findings in ALS could help accelerate the discovery of an effective treatment for this disease.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Riluzol/uso terapêutico , Adulto , Esclerose Lateral Amiotrófica/fisiopatologia , Progressão da Doença , Humanos , Resultado do Tratamento
12.
Mol Cell Neurosci ; 64: 44-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25511182

RESUMO

Motor neuron diseases, as the vast majority of neurodegenerative disorders in humans, are incurable conditions that are challenging to study in vitro, owing to the obstacles in obtaining the cell types majorly involved in the pathogenesis. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, have opened up the possibility of generating a substantial amount of disease-specific neuronal cells, including motor neurons and glial cells. The present review analyzes the practical implications of iPSCs, generated from fibroblasts of patients affected by spinal muscular atrophy (SMA), and discusses the challenges in the development and optimization of in vitro disease models. Research on patient-derived disease-specific cells may shed light on the pathological processes behind neuronal dysfunction and death in SMA, thus providing new insights for the development of novel effective therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Atrofia Muscular Espinal/metabolismo , Transplante de Células-Tronco , Animais , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/terapia , Proteínas do Complexo SMN/genética , Proteínas do Complexo SMN/metabolismo
13.
Stem Cell Reports ; 3(2): 297-311, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25254343

RESUMO

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a motor neuron disease caused by mutations in the IGHMBP2 gene, without a cure. Here, we demonstrate that neural stem cells (NSCs) from human-induced pluripotent stem cells (iPSCs) have therapeutic potential in the context of SMARD1. We show that upon transplantation NSCs can appropriately engraft and differentiate in the spinal cord of SMARD1 animals, ameliorating their phenotype, by protecting their endogenous motor neurons. To evaluate the effect of NSCs in the context of human disease, we generated human SMARD1-iPSCs motor neurons that had a significantly reduced survival and axon length. Notably, the coculture with NSCs ameliorate these disease features, an effect attributable to the production of neurotrophic factors and their dual inhibition of GSK-3 and HGK kinases. Our data support the role of iPSC as SMARD1 disease model and their translational potential for therapies in motor neuron disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Axônios/metabolismo , Diferenciação Celular , Linhagem da Célula , Técnicas de Cocultura , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Estimativa de Kaplan-Meier , Camundongos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/terapia , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/transplante , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Síndrome do Desconforto Respiratório do Recém-Nascido/mortalidade , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Transplante Heterólogo
14.
J Neurol Sci ; 346(1-2): 35-42, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25248952

RESUMO

Spinal muscular atrophy with respiratory distress type 1 (SMARD1), also known as distal spinal-muscular atrophy 1 (DSMA10), is an autosomal recessive type of spinal muscular atrophy that is related to mutations in the IGHMBP2 gene, which encodes for the immunoglobulin µ-binding protein. SMARD1 patients usually present low birth weight, diaphragmatic palsy and distal muscular atrophy. Clinical features are still the most important factor that leads to the diagnosis of SMARD1, due to the fact that IGHMBP2 gene mutations are characterized by significant phenotypic heterogeneity. In the present review, we will systematically discuss the genetic, clinical and neuropathological features of SMARD1 in order to provide a complete overview of SMARD1 variable clinical presentations and of the most important diagnostic tools which can be used to identify and properly manage affected individuals. This background is crucial also in the perspective of the development of novel therapeutic strategies for this still orphan disorder.


Assuntos
Proteínas de Ligação a DNA/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Mutação/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Fatores de Transcrição/genética , Doenças do Sistema Nervoso Autônomo/etiologia , Humanos , Atrofia Muscular Espinal/complicações , Neuroimagem , Síndrome do Desconforto Respiratório do Recém-Nascido/complicações
15.
Stem Cell Res Ther ; 5(4): 87, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25157556

RESUMO

Motor neurons are cells located in specific areas of the central nervous system, such as brain cortex (upper motor neurons), brain stem, and spinal cord (lower motor neurons), which maintain control over voluntary actions. Motor neurons are affected primarily by a wide spectrum of neurological disorders, generally indicated as motor neuron diseases (MNDs): these disorders share symptoms related to muscular atrophy and paralysis leading to death. No effective treatments are currently available. Stem cell-derived motor neurons represent a promising research tool in disease modeling, drug screening, and development of therapeutic approaches for MNDs and spinal cord injuries. Directed differentiation of human pluripotent stem cells - human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) - toward specific lineages is the first crucial step in order to extensively employ these cells in early human development investigation and potential clinical applications. Induced pluripotent stem cells (iPSCs) can be generated from patients' own somatic cells (for example, fibroblasts) by reprogramming them with specific factors. They can be considered embryonic stem cell-like cells, which express stem cell markers and have the ability to give rise to all three germ layers, bypassing the ethical concerns. Thus, hiPSCs constitute an appealing alternative source of motor neurons. These motor neurons might be a great research tool, creating a model for investigating the cellular and molecular interactions underlying early human brain development and pathologies during neurodegeneration. Patient-specific iPSCs may also provide the premises for autologous cell replacement therapies without related risks of immune rejection. Here, we review the most recent reported methods by which hESCs or iPSCs can be differentiated toward functional motor neurons with an overview on the potential clinical applications.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Biomarcadores/metabolismo , Diferenciação Celular , Humanos
16.
Mol Neurobiol ; 50(3): 721-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24809691

RESUMO

Motor neuron disorders, and particularly amyotrophic lateral sclerosis (ALS), are fatal diseases that are due to the loss of motor neurons in the brain and spinal cord, with progressive paralysis and premature death. It has been recently shown that the most frequent genetic cause of ALS, frontotemporal dementia (FTD), and other neurological diseases is the expansion of a hexanucleotide repeat (GGGGCC) in the non-coding region of the C9ORF72 gene. The pathogenic mechanisms that produce cell death in the presence of this expansion are still unclear. One of the most likely hypotheses seems to be the gain-of-function that is achieved through the production of toxic RNA (able to sequester RNA-binding protein) and/or toxic proteins. In recent works, different authors have reported that antisense oligonucleotides complementary to the C9ORF72 RNA transcript sequence were able to significantly reduce RNA foci generated by the expanded RNA, in affected cells. Here, we summarize the recent findings that support the idea that the buildup of "toxic" RNA containing the GGGGCC repeat contributes to the death of motor neurons in ALS and also suggest that the use of antisense oligonucleotides targeting this transcript is a promising strategy for treating ALS/frontotemporal lobe dementia (FTLD) patients with the C9ORF72 repeat expansion. These data are particularly important, given the state of the art antisense technology, and they allow researchers to believe that a clinical application of these discoveries will be possible soon.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Demência Frontotemporal/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Proteínas/genética , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72 , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Humanos , Neurônios Motores
17.
Cell Mol Life Sci ; 71(17): 3257-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24699704

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3-5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.


Assuntos
Esclerose Lateral Amiotrófica/cirurgia , Transplante de Células-Tronco , Pesquisa Translacional Biomédica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/terapia , Animais , Microambiente Celular , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Células-Tronco Embrionárias/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Injeções Espinhais , Transplante de Células-Tronco Mesenquimais , Neurônios Motores/patologia , Células-Tronco Neurais/transplante , Neurogênese , Neuroglia/fisiologia , Medula Espinal/patologia , Terapias em Estudo
18.
Clin Ther ; 36(3): 340-56.e5, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24636820

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a fatal motor neuron disease of childhood that is caused by mutations in the SMN1 gene. Currently, no effective treatment is available. One possible therapeutic approach is the use of antisense oligos (ASOs) to redirect the splicing of the paralogous gene SMN2, thus increasing functional SMN protein production. Various ASOs with different chemical properties are suitable for these applications, including a morpholino oligomer (MO) variant with a particularly excellent safety and efficacy profile. OBJECTIVE: We investigated a 25-nt MO sequence targeting the negative intronic splicing silencer (ISS-N1) 10 to 34 region. METHODS: We administered a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) in the SMAΔ7 mouse model and evaluated the effect and neuropathologic phenotype. We tested different concentrations (from 2 to 24 nM) and delivery protocols (intracerebroventricular injection, systemic injection, or both). We evaluated the treatment efficacy regarding SMN levels, survival, neuromuscular phenotype, and neuropathologic features. RESULTS: We found that a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) exhibited superior efficacy in transgenic SMAΔ7 mice compared with previously described sequences. In our experiments, the combination of local and systemic administration of MO (bare or conjugated to octaguanidine) was the most effective approach for increasing full-length SMN expression, leading to robust improvement in neuropathologic features and survival. Moreover, we found that several small nuclear RNAs were deregulated in SMA mice and that their levels were restored by MO treatment. CONCLUSION: These results indicate that MO-mediated SMA therapy is efficacious and can result in phenotypic rescue, providing important insights for further development of ASO-based therapeutic strategies in SMA patients.


Assuntos
Íntrons/efeitos dos fármacos , Morfolinos/administração & dosagem , Morfolinos/uso terapêutico , Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/uso terapêutico , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Comportamento/efeitos dos fármacos , Modelos Animais de Doenças , Injeções , Camundongos , Camundongos Transgênicos , Neurônios Motores , Atrofia Muscular Espinal/genética , Fenótipo , Splicing de RNA , RNA Nuclear Pequeno/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Medula Espinal
19.
J Cell Mol Med ; 18(2): 187-96, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24400925

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease. It is the first genetic cause of infant mortality. It is caused by mutations in the survival motor neuron 1 (SMN1) gene, leading to the reduction of SMN protein. The most striking component is the loss of alpha motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment other than supportive care, although the past decade has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials. In this review, we would like to outline the most interesting therapeutic strategies that are currently developing, which are represented by molecular, gene and stem cell-mediated approaches for the treatment of SMA.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Transplante de Células-Tronco , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Lactente , Morfolinos/uso terapêutico , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
20.
Cell Mol Life Sci ; 71(6): 999-1015, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24100629

RESUMO

Neurodegenerative disorders are characterized by the selective vulnerability and progressive loss of discrete neuronal populations. Non-neuronal cells appear to significantly contribute to neuronal loss in diseases such as amyotrophic lateral sclerosis (ALS), Parkinson, and Alzheimer's disease. In ALS, there is deterioration of motor neurons in the cortex, brainstem, and spinal cord, which control voluntary muscle groups. This results in muscle wasting, paralysis, and death. Neuroinflammation, characterized by the appearance of reactive astrocytes and microglia as well as macrophage and T-lymphocyte infiltration, appears to be highly involved in the disease pathogenesis, highlighting the involvement of non-neuronal cells in neurodegeneration. There appears to be cross-talk between motor neurons, astrocytes, and immune cells, including microglia and T-lymphocytes, which are subsequently activated. Currently, effective therapies for ALS are lacking; however, the non-cell autonomous nature of ALS may indicate potential therapeutic targets. Here, we review the mechanisms of action of astrocytes, microglia, and T-lymphocytes in the nervous system in health and during the pathogenesis of ALS. We also evaluate the therapeutic potential of these cellular populations, after transplantation into ALS patients and animal models of the disease, in modulating the environment surrounding motor neurons from pro-inflammatory to neuroprotective. We also thoroughly discuss the recent advances made in the field and caveats that need to be overcome for clinical translation of cell therapies aimed at modulating non-cell autonomous events to preserve remaining motor neurons in patients.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Astrócitos/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Microglia/transplante , Linfócitos T/transplante , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Inflamação/terapia , Macrófagos/imunologia , Camundongos , Microglia/metabolismo , Neurônios Motores/metabolismo , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA