Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Am J Respir Crit Care Med ; 210(3): 288-297, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635834

RESUMO

Background: The anti-IgE monoclonal antibody omalizumab is widely used for severe asthma. This study aimed to identify biomarkers that predict clinical improvement during 1 year of omalizumab treatment. Methods: One-year open-label Study of Mechanisms of action of Omalizumab in Severe Asthma (SoMOSA) involving 216 patients with severe (Global Initiative for Asthma step 4/5) uncontrolled atopic asthma (at least two severe exacerbations in the previous year) taking high-dose inhaled corticosteroids and long-acting ß-agonists with or without maintenance oral corticosteroids. It had two phases: 0-16 weeks, to assess early clinical improvement by Global Evaluation of Therapeutic Effectiveness (GETE); and 16-52 weeks, to assess late responses based on ⩾50% reduction in exacerbations or mOCS dose. All participants provided samples (exhaled breath, blood, sputum, urine) before and after 16 weeks of omalizumab treatment. Measurements and Main Results: A total of 191 patients completed phase 1; 63% had early improvement. Of 173 who completed phase 2, 69% had reduced exacerbations by ⩾50% and 57% (37 of 65) taking mOCSs had reduced their dose by ⩾50%. The primary outcomes 2,3-dinor-11-ß-PGF2α, GETE score, and standard clinical biomarkers (blood and sputum eosinophils, exhaled nitric oxide, serum IgE) did not predict either clinical response. Five volatile organic compounds and five plasma lipid biomarkers strongly predicted the ⩾50% reduction in exacerbations (receiver operating characteristic areas under the curve of 0.780 and 0.922, respectively) and early responses (areas under the curve of 0.835 and 0.949, respectively). In an independent cohort, gas chromatography/mass spectrometry biomarkers differentiated between severe and mild asthma. Conclusions: This is the first discovery of omics biomarkers that predict improvement in asthma with biologic agent treatment. Prospective validation and development for clinical use is justified.


Assuntos
Antiasmáticos , Asma , Biomarcadores , Omalizumab , Humanos , Omalizumab/uso terapêutico , Asma/tratamento farmacológico , Asma/sangue , Masculino , Feminino , Antiasmáticos/uso terapêutico , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Resultado do Tratamento , Índice de Gravidade de Doença , Imunoglobulina E/sangue , Escarro/citologia , Anticorpos Anti-Idiotípicos/uso terapêutico , Testes Respiratórios
2.
J Pers Med ; 13(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37511673

RESUMO

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has led to the death of almost 7 million people, however, with a cumulative incidence of 0.76 billion, most people survive COVID-19. Several studies indicate that the acute phase of COVID-19 may be followed by persistent symptoms including fatigue, dyspnea, headache, musculoskeletal symptoms, and pulmonary functional-and radiological abnormalities. However, the impact of COVID-19 on long-term health outcomes remains to be elucidated. Aims: The Precision Medicine for more Oxygen (P4O2) consortium COVID-19 extension aims to identify long COVID patients that are at risk for developing chronic lung disease and furthermore, to identify treatable traits and innovative personalized therapeutic strategies for prevention and treatment. This study aims to describe the study design and first results of the P4O2 COVID-19 cohort. Methods: The P4O2 COVID-19 study is a prospective multicenter cohort study that includes nested personalized counseling intervention trial. Patients, aged 40-65 years, were recruited from outpatient post-COVID clinics from five hospitals in The Netherlands. During study visits at 3-6 and 12-18 months post-COVID-19, data from medical records, pulmonary function tests, chest computed tomography scans and biological samples were collected and questionnaires were administered. Furthermore, exposome data was collected at the patient's home and state-of-the-art imaging techniques as well as multi-omics analyses will be performed on collected data. Results: 95 long COVID patients were enrolled between May 2021 and September 2022. The current study showed persistence of clinical symptoms and signs of pulmonary function test/radiological abnormalities in post-COVID patients at 3-6 months post-COVID. The most commonly reported symptoms included respiratory symptoms (78.9%), neurological symptoms (68.4%) and fatigue (67.4%). Female sex and infection with the Delta, compared with the Beta, SARS-CoV-2 variant were significantly associated with more persisting symptom categories. Conclusions: The P4O2 COVID-19 study contributes to our understanding of the long-term health impacts of COVID-19. Furthermore, P4O2 COVID-19 can lead to the identification of different phenotypes of long COVID patients, for example those that are at risk for developing chronic lung disease. Understanding the mechanisms behind the different phenotypes and identifying these patients at an early stage can help to develop and optimize prevention and treatment strategies.

3.
Brain Behav Immun ; 111: 249-258, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146653

RESUMO

BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.


Assuntos
Asma , Interleucina-6 , Humanos , Asma/complicações , Ansiedade , Comorbidade , Inflamação/complicações , Biomarcadores
4.
J Allergy Clin Immunol ; 152(1): 117-125, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36918039

RESUMO

BACKGROUND: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS: Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.


Assuntos
Asma , Escarro , Humanos , Escarro/metabolismo , Lipidômica , Proteômica/métodos , Estudos Transversais , Estudos Prospectivos , Lipídeos
5.
Front Immunol ; 13: 988685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203591

RESUMO

Background: The COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information. Methods: Gene expression of whole blood obtained at the point of admission from a cohort of 78 patients hospitalised with COVID-19 during the first wave was measured by high resolution RNA sequencing. Gene signatures predictive of admission to Intensive Care Unit were identified and tested using machine learning and topological data analysis, TopMD. Results: The best gene expression signature predictive of ICU admission was defined using topological data analysis with an accuracy: 0.72 and ROC AUC: 0.76. The gene signature was primarily based on differentially activated pathways controlling epidermal growth factor receptor (EGFR) presentation, Peroxisome proliferator-activated receptor alpha (PPAR-α) signalling and Transforming growth factor beta (TGF-ß) signalling. Conclusions: Gene expression signatures from blood taken at the point of admission to hospital predicted ICU admission of treatment naïve patients with COVID-19.


Assuntos
COVID-19 , COVID-19/genética , Receptores ErbB , Expressão Gênica , Humanos , Unidades de Terapia Intensiva , PPAR alfa , Pandemias , Fator de Crescimento Transformador beta
6.
J Transl Med ; 20(1): 342, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907883

RESUMO

BACKGROUND: NAFLD and NASH are emerging as primary causes of chronic liver disease, indicating a need for an effective treatment. Mutaflor® probiotic, a microbial treatment of interest, was effective in sustaining remission in ulcerative colitis patients. OBJECTIVE: To construct a genetic-epigenetic network linked to HSC signaling as a modulator of NAFLD/NASH pathogenesis, then assess the effects of Mutaflor® on this network. METHODS: First, in silico analysis was used to construct a genetic-epigenetic network linked to HSC signaling. Second, an investigation using rats, including HFHSD induced NASH and Mutaflor® treated animals, was designed. Experimental procedures included biochemical and histopathologic analysis of rat blood and liver samples. At the molecular level, the expression of genetic (FOXA2, TEAD2, and LATS2 mRNAs) and epigenetic (miR-650, RPARP AS-1 LncRNA) network was measured by real-time PCR. PCR results were validated with immunohistochemistry (α-SMA and LATS2). Target effector proteins, IL-6 and TGF-ß, were estimated by ELISA. RESULTS: Mutaflor® administration minimized biochemical and histopathologic alterations caused by NAFLD/NASH. HSC activation and expression of profibrogenic IL-6 and TGF-ß effector proteins were reduced via inhibition of hedgehog and hippo pathways. Pathways may have been inhibited through upregulation of RPARP AS-1 LncRNA which in turn downregulated the expression of miR-650, FOXA2 mRNA and TEAD2 mRNA and upregulated LATS2 mRNA expression. CONCLUSION: Mutaflor® may slow the progression of NAFLD/NASH by modulating a genetic-epigenetic network linked to HSC signaling. The probiotic may be a useful modality for the prevention and treatment of NAFLD/NASH.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Probióticos , RNA Longo não Codificante , Animais , Células Estreladas do Fígado , Interleucina-6/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Probióticos/farmacologia , Probióticos/uso terapêutico , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Ratos , Fator de Crescimento Transformador beta/metabolismo
7.
Front Immunol ; 13: 853265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663963

RESUMO

The worldwide COVID-19 pandemic has claimed millions of lives and has had a profound effect on global life. Understanding the body's immune response to SARS-CoV-2 infection is crucial in improving patient management and prognosis. In this study we compared influenza and SARS-CoV-2 infected patient cohorts to identify distinct blood transcript abundances and cellular composition to better understand the natural immune response associated with COVID-19, compared to another viral infection being influenza, and identify a prognostic signature of COVID-19 patient outcome. Clinical characteristics and peripheral blood were acquired upon hospital admission from two well characterised cohorts, a cohort of 88 patients infected with influenza and a cohort of 80 patients infected with SARS-CoV-2 during the first wave of the pandemic and prior to availability of COVID-19 treatments and vaccines. Gene transcript abundances, enriched pathways and cellular composition were compared between cohorts using RNA-seq. A genetic signature between COVID-19 survivors and non-survivors was assessed as a prognostic predictor of COVID-19 outcome. Contrasting immune responses were detected with an innate response elevated in influenza and an adaptive response elevated in COVID-19. Additionally ribosomal, mitochondrial oxidative stress and interferon signalling pathways differentiated the cohorts. An adaptive immune response was associated with COVID-19 survival, while an inflammatory response predicted death. A prognostic transcript signature, associated with circulating immunoglobulins, nucleosome assembly, cytokine production and T cell activation, was able to stratify COVID-19 patients likely to survive or die. This study provides a unique insight into the immune responses of treatment naïve patients with influenza or COVID-19. The comparison of immune response between COVID-19 survivors and non-survivors enables prognostication of COVID-19 patients and may suggest potential therapeutic strategies to improve survival.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Imunidade Adaptativa , Humanos , Pandemias , SARS-CoV-2
8.
PLoS Pathog ; 17(11): e1010033, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780568

RESUMO

Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell's ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers.


Assuntos
Doenças dos Animais/patologia , Diferenciação Celular , Doenças Transmissíveis/patologia , Neoplasias Faciais/veterinária , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Células de Schwann/patologia , Doenças dos Animais/genética , Doenças dos Animais/metabolismo , Animais , Variação Biológica da População , Doenças Transmissíveis/genética , Doenças Transmissíveis/metabolismo , Neoplasias Faciais/classificação , Perfilação da Expressão Gênica , Marsupiais , Proteoma/análise , Células de Schwann/metabolismo , Transcriptoma
9.
Nat Genet ; 53(2): 205-214, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432184

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Células Epiteliais/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Chlorocebus aethiops , Éxons , Células HEK293 , Humanos , Interferons/imunologia , Ligação Proteica , Isoformas de Proteínas/genética , Sítios de Splice de RNA , RNA-Seq , Sistema Respiratório/citologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Transcriptoma , Regulação para Cima , Células Vero
10.
NPJ Biofilms Microbiomes ; 6(1): 46, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127897

RESUMO

Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana , Genes Essenciais , Pseudomonas aeruginosa/fisiologia , Biofilmes/classificação , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genômica , Técnicas Analíticas Microfluídicas , Mutagênese Insercional , Fenótipo , Proteogenômica , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética
11.
Toxicol In Vitro ; 62: 104697, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31669365

RESUMO

The potential risk of skin sensitisation, associated with the development of allergic contact dermatitis (ACD), is a consideration in the safety assessment of new ingredients for use in personal care products. Protein haptenation in skin by sensitising chemicals is the molecular initiating event causative of skin sensitisation. Current methods for monitoring skin sensitisation rely on limited reactivity assays, motivating interest in the development of proteomic approaches to characterise the skin haptenome. Increasing our mechanistic understanding of skin sensitisation and ACD using proteomics presents an opportunity to develop non-animal predictive methods and/or risk assessment approaches. Previously, we have used a novel stable isotope labelling approach combined with data independent mass spectrometry (HDMSE) to characterise the haptenome for a number of well-known sensitisers. We have now extended this work by characterising the haptenome of the sensitisers Diphenylcyclopropenone (DPCP) and Ethyl Acrylate (EA) with the model protein Human Serum Albumin (HSA) and the complex lysates of the skin keratinocyte, HaCaT cell line. We show that haptenation in complex nucleophilic models is not random, but a specific, low level and reproducible event. Proteomic analysis extends our understanding of sensitiser reactivity beyond simple reactivity assays and offers a route to monitoring haptenation in living cells.


Assuntos
Dermatite Alérgica de Contato/patologia , Haptenos/química , Imunização , Proteínas/química , Proteômica/métodos , Pele/efeitos dos fármacos , Acrilatos/toxicidade , Linhagem Celular , Ciclopropanos/toxicidade , Dermatite Alérgica de Contato/imunologia , Humanos , Espectrometria de Massas , Modelos Moleculares , Albumina Sérica/química
12.
Epigenetics ; 15(1-2): 107-121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31448663

RESUMO

DNA methyltransferase I plays the central role in maintenance of CpG DNA methylation patterns across the genome and alteration of CpG methylation patterns is a frequent and significant occurrence across many cancers. Cancer cells carrying hypomorphic alleles of Dnmt1 have become important tools for understanding Dnmt1 function and CpG methylation. In this study, we analyse colorectal cancer cells with a homozygous deletion of exons 3 to 5 of Dnmt1, resulting in reduced Dnmt1 activity. Although this cell model has been widely used to study the epigenome, the effects of the Dnmt1 hypomorph on cell signalling pathways and the wider proteome are largely unknown. In this study, we perform the first quantitative proteomic analysis of this important cell model and identify multiple signalling pathways and processes that are significantly dysregulated in the hypomorph cells. In Dnmt1 hypomorph cells, we observed a clear and unexpected signature of increased Epithelial-to-Mesenchymal transition (EMT) markers as well as reduced expression and sub-cellular re-localization of Beta-Catenin. Expression of wild-type Dnmt1 in hypomorph cells or knock-down of wild-type Dnmt1 did not recapitulate or rescue the observed protein profiles in Dnmt1 hypomorph cells suggesting that hypomorphic Dnmt1 causes changes not solely attributable to Dnmt1 protein levels. In summary, we present the first comprehensive proteomic analysis of the widely studied Dnmt1 hypomorph colorectal cancer cells and identify redistribution of Dnmt1 and its interaction partner Beta-Catenin.


Assuntos
Neoplasias Colorretais/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA , Transição Epitelial-Mesenquimal , Proteoma/genética , Neoplasias Colorretais/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Células HCT116 , Células HEK293 , Humanos , Mutação , Transporte Proteico , Proteoma/metabolismo , Transdução de Sinais , beta Catenina/metabolismo
13.
J Allergy Clin Immunol ; 144(5): 1198-1213, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30998987

RESUMO

BACKGROUND: The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required. OBJECTIVE: We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity. METHODS: Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17-high and IL-13-high asthma phenotypes. RESULTS: Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17-high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and ß-defensin. CONCLUSION: The IL-17-high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-17.


Assuntos
Asma/imunologia , Brônquios/patologia , Células Epiteliais/metabolismo , Interleucina-17/metabolismo , Neutrófilos/imunologia , Psoríase/imunologia , Adulto , Biomarcadores/metabolismo , Estudos de Coortes , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Interleucina-13/metabolismo , Masculino , Fenótipo , Transdução de Sinais , Transcriptoma , Regulação para Cima
14.
J Allergy Clin Immunol ; 144(1): 70-82, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30928653

RESUMO

BACKGROUND: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. OBJECTIVE: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. METHODS: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. RESULTS: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. CONCLUSION: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies.


Assuntos
Asma/metabolismo , Proteoma , Escarro/metabolismo , Adulto , Idoso , Asma/imunologia , Asma/fisiopatologia , Biomarcadores/metabolismo , Eosinofilia/imunologia , Eosinofilia/metabolismo , Eosinofilia/fisiopatologia , Eosinófilos/imunologia , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Fenótipo , Proteômica , Adulto Jovem
16.
J Proteome Res ; 17(6): 2072-2091, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29737851

RESUMO

Analysis of induced sputum supernatant is a minimally invasive approach to study the epithelial lining fluid and, thereby, provide insight into normal lung biology and the pathobiology of lung diseases. We present here a novel proteomics approach to sputum analysis developed within the U-BIOPRED (unbiased biomarkers predictive of respiratory disease outcomes) international project. We present practical and analytical techniques to optimize the detection of robust biomarkers in proteomic studies. The normal sputum proteome was derived using data-independent HDMSE applied to 40 healthy nonsmoking participants, which provides an essential baseline from which to compare modulation of protein expression in respiratory diseases. The "core" sputum proteome (proteins detected in ≥40% of participants) was composed of 284 proteins, and the extended proteome (proteins detected in ≥3 participants) contained 1666 proteins. Quality control procedures were developed to optimize the accuracy and consistency of measurement of sputum proteins and analyze the distribution of sputum proteins in the healthy population. The analysis showed that quantitation of proteins by HDMSE is influenced by several factors, with some proteins being measured in all participants' samples and with low measurement variance between samples from the same patient. The measurement of some proteins is highly variable between repeat analyses, susceptible to sample processing effects, or difficult to accurately quantify by mass spectrometry. Other proteins show high interindividual variance. We also highlight that the sputum proteome of healthy individuals is related to sputum neutrophil levels, but not gender or allergic sensitization. We illustrate the importance of design and interpretation of disease biomarker studies considering such protein population and technical measurement variance.


Assuntos
Proteoma/química , Proteômica/métodos , Escarro/química , Análise de Variância , Biomarcadores/análise , Conjuntos de Dados como Assunto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas , Proteínas/análise , Reprodutibilidade dos Testes
17.
Microbiology (Reading) ; 163(11): 1664-1679, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29034854

RESUMO

During conditions of nutrient limitation bacteria undergo a series of global gene expression changes to survive conditions of amino acid and fatty acid starvation. Rapid reallocation of cellular resources is brought about by gene expression changes coordinated by the signalling nucleotides' guanosine tetraphosphate or pentaphosphate, collectively termed (p)ppGpp and is known as the stringent response. The stringent response has been implicated in bacterial virulence, with elevated (p)ppGpp levels being associated with increased virulence gene expression. This has been observed in the highly pathogenic Francisella tularensis sub spp. tularensis SCHU S4, the causative agent of tularaemia. Here, we aimed to artificially induce the stringent response by culturing F. tularensis in the presence of the amino acid analogue l-serine hydroxamate. Serine hydroxamate competitively inhibits tRNAser aminoacylation, causing an accumulation of uncharged tRNA. The uncharged tRNA enters the A site on the translating bacterial ribosome and causes ribosome stalling, in turn stimulating the production of (p)ppGpp and activation of the stringent response. Using the essential virulence gene iglC, which is encoded on the Francisella pathogenicity island (FPI) as a marker of active stringent response, we optimized the culture conditions required for the investigation of virulence gene expression under conditions of nutrient limitation. We subsequently used whole genome RNA-seq to show how F. tularensis alters gene expression on a global scale during active stringent response. Key findings included up-regulation of genes involved in virulence, stress responses and metabolism, and down-regulation of genes involved in metabolite transport and cell division. F. tularensis is a highly virulent intracellular pathogen capable of causing debilitating or fatal disease at extremely low infectious doses. However, virulence mechanisms are still poorly understood. The stringent response is widely recognized as a diverse and complex bacterial stress response implicated in virulence. This work describes the global gene expression profile of F. tularensis SCHU S4 under active stringent response for the first time. Herein we provide evidence for an association of active stringent response with FPI virulence gene expression. Our results further the understanding of the molecular basis of virulence and regulation thereof in F. tularensis. These results also support research into genes involved in (p)ppGpp production and polyphosphate biosynthesis and their applicability as targets for novel antimicrobials.


Assuntos
Adaptação Biológica/fisiologia , Francisella tularensis/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Ilhas Genômicas/genética , Transcriptoma/fisiologia , Virulência/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Genes Reguladores/genética , Genes Reguladores/fisiologia , Ilhas Genômicas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Proteoma/fisiologia , Análise de Sequência de RNA , Serina/análogos & derivados , Serina/toxicidade , Estresse Fisiológico , Ativação Transcricional/genética , Ativação Transcricional/fisiologia , Transcriptoma/genética , Virulência/genética
18.
Oncotarget ; 8(30): 48737-48754, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28467787

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease that usually affects elderly people. It has a poor prognosis and there are limited therapies. Since epigenetic alterations are associated with IPF, histone deacetylase (HDAC) inhibitors offer a novel therapeutic strategy to address the unmet medical need. This study investigated the potential of romidepsin, an FDA-approved HDAC inhibitor, as an anti-fibrotic treatment and evaluated biomarkers of target engagement that may have utility in future clinical trials. The anti-fibrotic effects of romidepsin were evaluated both in vitro and in vivo together with any harmful effect on alveolar type II cells (ATII). Bronchoalveolar lavage fluid (BALF) from IPF or control donors was analyzed for the presence of lysyl oxidase (LOX). In parallel with an increase in histone acetylation, romidepsin potently inhibited fibroblast proliferation, myofibroblast differentiation and LOX expression. ATII cell numbers and their lamellar bodies were unaffected. In vivo, romidepsin inhibited bleomycin-induced pulmonary fibrosis in association with suppression of LOX expression. LOX was significantly elevated in BALF of IPF patients compared to controls. These data show the anti-fibrotic effects of romidepsin, supporting its potential use as novel treatment for IPF with LOX as a companion biomarker for evaluation of early on-target effects.


Assuntos
Depsipeptídeos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Acetilação , Biomarcadores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Depsipeptídeos/uso terapêutico , Epigênese Genética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Masculino
19.
Am J Respir Crit Care Med ; 195(10): 1311-1320, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27925796

RESUMO

RATIONALE: Stratification of asthma at the molecular level, especially using accessible biospecimens, could greatly enable patient selection for targeted therapy. OBJECTIVES: To determine the value of blood analysis to identify transcriptional differences between clinically defined asthma and nonasthma groups, identify potential patient subgroups based on gene expression, and explore biological pathways associated with identified differences. METHODS: Transcriptomic profiles were generated by microarray analysis of blood from 610 patients with asthma and control participants in the U-BIOPRED (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes) study. Differentially expressed genes (DEGs) were identified by analysis of variance, including covariates for RNA quality, sex, and clinical site, and Ingenuity Pathway Analysis was applied. Patient subgroups based on DEGs were created by hierarchical clustering and topological data analysis. MEASUREMENTS AND MAIN RESULTS: A total of 1,693 genes were differentially expressed between patients with severe asthma and participants without asthma. The differences from participants without asthma in the nonsmoking severe asthma and mild/moderate asthma subgroups were significantly related (r = 0.76), with a larger effect size in the severe asthma group. The majority of, but not all, differences were explained by differences in circulating immune cell populations. Pathway analysis showed an increase in chemotaxis, migration, and myeloid cell trafficking in patients with severe asthma, decreased B-lymphocyte development and hematopoietic progenitor cells, and lymphoid organ hypoplasia. Cluster analysis of DEGs led to the creation of subgroups among the patients with severe asthma who differed in molecular responses to oral corticosteroids. CONCLUSIONS: Blood gene expression differences between clinically defined subgroups of patients with asthma and individuals without asthma, as well as subgroups of patients with severe asthma defined by transcript profiles, show the value of blood analysis in stratifying patients with asthma and identifying molecular pathways for further study. Clinical trial registered with www.clinicaltrials.gov (NCT01982162).


Assuntos
Corticosteroides/uso terapêutico , Asma/sangue , Asma/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Corticosteroides/sangue , Adulto , Análise por Conglomerados , Estudos de Coortes , Europa (Continente) , Feminino , Humanos , Masculino , Análise em Microsséries/estatística & dados numéricos , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Transcriptoma/efeitos dos fármacos
20.
Xenobiotica ; 47(2): 164-175, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27086508

RESUMO

1. Metabolic acidosis due to accumulation of l-5-oxoproline is a rare, poorly understood, disorder associated with acetaminophen treatment in malnourished patients with chronic morbidity. l-5-Oxoprolinuria signals abnormal functioning of the γ-glutamyl cycle, which recycles and synthesises glutathione. Inhibition of glutathione synthetase (GS) by N-acetyl-p-benzoquinone imine (NAPQI) could contribute to 5-oxoprolinuric acidosis in such patients. We investigated the interaction of NAPQI with GS in vitro. 2. Peptide mapping of co-incubated NAPQI and GS using mass spectrometry demonstrated binding of NAPQI with cysteine-422 of GS, which is known to be essential for GS activity. Computational docking shows that NAPQI is properly positioned for covalent bonding with cysteine-422 via Michael addition and hence supports adduct formation. 3. Co-incubation of 0.77 µM of GS with NAPQI (25-400 µM) decreased enzyme activity by 16-89%. Inhibition correlated strongly with the concentration of NAPQI and was irreversible. 4. NAPQI binds covalently to GS causing irreversible enzyme inhibition in vitro. This is an important novel biochemical observation. It is the first indication that NAPQI may inhibit glutathione synthesis, which is pivotal in NAPQI detoxification. Further studies are required to investigate its biological significance and its role in 5-oxoprolinuric acidosis.


Assuntos
Benzoquinonas/toxicidade , Glutationa Sintase/metabolismo , Iminas/toxicidade , Acetaminofen/toxicidade , Acidose/induzido quimicamente , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA