Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2304574, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739747

RESUMO

Increasing the potency, quality, and durability of vaccines represents a major public health challenge. A critical parameter that shapes vaccine immunity is the spatiotemporal context in which immune cells interact with antigen and adjuvant. While various material-based strategies demonstrate that extended antigen release enhances both cellular and humoral immunity, the effect of adjuvant kinetics on vaccine-mediated immunity remains incompletely understood. Here, a previously characterized mesoporous silica rod (MPS) biomaterial vaccine is used to develop a facile, electrostatics-driven approach to tune in vivo kinetics of the TLR9 agonist cytosine phosphoguanosine oligodeoxynucleotide (CpG). It is demonstrated that rapid release of CpG from MPS vaccines, mediated by alterations in MPS chemistry that tune surface charge, generates potent cytotoxic T cell responses and robust, T helper type 1 (Th1)-skewed IgG2a/c antibody titers. Immunophenotyping of lymphoid organs after MPS vaccination with slow or fast CpG release kinetics suggests that differential engagement of migratory dendritic cells and natural killer cells may contribute to the more potent responses observed with rapid adjuvant release. Taken together, these findings suggest that vaccine approaches that pair sustained release of antigen with rapid release of adjuvants with similar characteristics to CpG may drive particularly potent Th1 responses.

2.
Nat Biomed Eng ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710838

RESUMO

Following immunization, lymph nodes dynamically expand and contract. The mechanical and cellular changes enabling the early-stage expansion of lymph nodes have been characterized, yet the durability of such responses and their implications for adaptive immunity and vaccine efficacy are unknown. Here, by leveraging high-frequency ultrasound imaging of the lymph nodes of mice, we report more potent and persistent lymph-node expansion for animals immunized with a mesoporous silica vaccine incorporating a model antigen than for animals given bolus immunization or standard vaccine formulations such as alum, and that durable and robust lymph-node expansion was associated with vaccine efficacy and adaptive immunity for 100 days post-vaccination in a mouse model of melanoma. Immunization altered the mechanical and extracellular-matrix properties of the lymph nodes, drove antigen-dependent proliferation of immune and stromal cells, and altered the transcriptional features of dendritic cells and inflammatory monocytes. Strategies that robustly maintain lymph-node expansion may result in enhanced vaccination outcomes.

3.
Nat Nanotechnol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491184

RESUMO

Multivalent presentation of ligands often enhances receptor activation and downstream signalling. DNA origami offers a precise nanoscale spacing of ligands, a potentially useful feature for therapeutic nanoparticles. Here we use a square-block DNA origami platform to explore the importance of the spacing of CpG oligonucleotides. CpG engages Toll-like receptors and therefore acts to activate dendritic cells. Through in vitro cell culture studies and in vivo tumour treatment models, we demonstrate that square blocks induce Th1 immune polarization when CpG is spaced at 3.5 nm. We observe that this DNA origami vaccine enhances DC activation, antigen cross-presentation, CD8 T-cell activation, Th1-polarized CD4 activation and natural-killer-cell activation. The vaccine also effectively synergizes with anti-PD-L1 for improved cancer immunotherapy in melanoma and lymphoma models and induces long-term T-cell memory. Our results suggest that DNA origami may serve as a platform for controlling adjuvant spacing and co-delivering antigens in vaccines.

4.
J Immunol ; 212(2): 179-187, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38166245

RESUMO

Therapeutic cancer vaccines offer the promise of stimulating the immune system to specifically eradicate tumor cells and establish long-term memory to prevent tumor recurrence. However, despite showing benign safety profiles and the ability to generate Ag-specific cellular responses, cancer vaccines have been hampered by modest clinical efficacy. Lessons learned from these studies have led to the emergence of innovative materials-based strategies that aim to boost the clinical activity of cancer vaccines. In this Brief Review, we provide an overview of the key elements needed for an effective vaccine-induced antitumor response, categorize current approaches to therapeutic cancer vaccination, and explore recent advances in materials-based strategies to potentiate cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/prevenção & controle , Neoplasias/tratamento farmacológico , Vacinação
5.
Mater Today Bio ; 23: 100817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37822453

RESUMO

Immunotherapy has emerged as a promising strategy to eradicate cancer cells. Particularly, the development of cancer vaccines to induce a potent and sustained antigen-specific T cell response has become a center of attention. Herein, we describe a novel immunotherapy based on magnetic nanoparticles (MNP) covalently modified with the OVA254-267 antigen and a CpG oligonucleotide via disulfide bonds. The MNP-CpG-COVA significantly enhances dendritic cell activation and CD8+ T cell antitumoral response against B16-OVA melanoma cells in vitro. Notably, the immune response induced by the covalently modified MNP is more potent and sustained over time than that triggered by the free components, highlighting the advantage of nanoformulations in immunotherapies. What is more, the nanoparticles are stable in the blood after in vivo administration and induce potent levels of systemic tumor-specific effector CD8 + T cells. Overall, our findings highlight the potential of covalently functionalized MNP to induce robust immune responses against mouse melanoma.

6.
Nat Commun ; 14(1): 3546, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322053

RESUMO

Although adoptive T cell therapy provides the T cell pool needed for immediate tumor debulking, the infused T cells generally have a narrow repertoire for antigen recognition and limited ability for long-term protection. Here, we present a hydrogel that locally delivers adoptively transferred T cells to the tumor site while recruiting and activating host antigen-presenting cells with GMCSF or FLT3L and CpG, respectively. T cells alone loaded into these localized cell depots provided significantly better control of subcutaneous B16-F10 tumors than T cells delivered through direct peritumoral injection or intravenous infusion. T cell delivery combined with biomaterial-driven accumulation and activation of host immune cells prolonged the activation of the delivered T cells, minimized host T cell exhaustion, and enabled long-term tumor control. These findings highlight how this integrated approach provide both immediate tumor debulking and long-term protection against solid tumors, including against tumor antigen escape.


Assuntos
Criogéis , Neoplasias , Humanos , Neoplasias/patologia , Imunoterapia Adotiva , Linfócitos T , Células Apresentadoras de Antígenos
7.
Cancer Immunol Immunother ; 71(12): 2957-2968, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35524791

RESUMO

Disruption of the tumor extracellular matrix (ECM) may alter immune cell infiltration into the tumor and antitumor T cell priming in the tumor-draining lymph nodes (tdLNs). Here, we explore how intratumoral enzyme treatment (ET) of B16 melanoma tumors with ECM-depleting enzyme hyaluronidase alters adaptive and innate immune populations, including T cells, DCs, and macrophages, in the tumors and tdLNs. ET increased CD103+ DC abundance in the tdLNs, as well as antigen presentation of a model tumor antigen ovalbumin (OVA), eliciting local OVA-specific CD8+ T cell responses. Delivered in combination with a distant cryogel-based cancer vaccine, ET increased the systemic antigen-specific CD8+ T cell response. By enhancing activity within the tdLN, ET may broadly support immunotherapies in generating tumor-specific immunity.


Assuntos
Vacinas Anticâncer , Melanoma Experimental , Animais , Humanos , Ovalbumina , Células Dendríticas , Hialuronoglucosaminidase , Criogéis , Antígenos de Neoplasias , Linfonodos , Matriz Extracelular
8.
Nature ; 606(7916): 992-998, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614223

RESUMO

Most cancer vaccines target peptide antigens, necessitating personalization owing to the vast inter-individual diversity in major histocompatibility complex (MHC) molecules that present peptides to T cells. Furthermore, tumours frequently escape T cell-mediated immunity through mechanisms that interfere with peptide presentation1. Here we report a cancer vaccine that induces a coordinated attack by diverse T cell and natural killer (NK) cell populations. The vaccine targets the MICA and MICB (MICA/B) stress proteins expressed by many human cancers as a result of DNA damage2. MICA/B serve as ligands for the activating NKG2D receptor on T cells and NK cells, but tumours evade immune recognition by proteolytic MICA/B cleavage3,4. Vaccine-induced antibodies increase the density of MICA/B proteins on the surface of tumour cells by inhibiting proteolytic shedding, enhance presentation of tumour antigens by dendritic cells to T cells and augment the cytotoxic function of NK cells. Notably, this vaccine maintains efficacy against MHC class I-deficient tumours resistant to cytotoxic T cells through the coordinated action of NK cells and CD4+ T cells. The vaccine is also efficacious in a clinically important setting: immunization following surgical removal of primary, highly metastatic tumours inhibits the later outgrowth of metastases. This vaccine design enables protective immunity even against tumours with common escape mutations.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Dermatopatias Genéticas , Vacinas , Antígenos de Histocompatibilidade Classe I , Humanos , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/prevenção & controle
9.
Nat Commun ; 11(1): 5696, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173046

RESUMO

Poorly immunogenic tumors, including triple negative breast cancers (TNBCs), remain resistant to current immunotherapies, due in part to the difficulty of reprogramming the highly immunosuppressive tumor microenvironment (TME). Here we show that peritumorally injected, macroporous alginate gels loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF) for concentrating dendritic cells (DCs), CpG oligonucleotides, and a doxorubicin-iRGD conjugate enhance the immunogenic death of tumor cells, increase systemic tumor-specific CD8 + T cells, repolarize tumor-associated macrophages towards an inflammatory M1-like phenotype, and significantly improve antitumor efficacy against poorly immunogenic TNBCs. This system also prevents tumor recurrence after surgical resection and results in 100% metastasis-free survival upon re-challenge. This chemo-immunotherapy that concentrates DCs to present endogenous tumor antigens generated in situ may broadly serve as a facile platform to modulate the suppressive TME, and enable in situ personalized cancer vaccination.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antígenos de Neoplasias/metabolismo , Biotecnologia/métodos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Fatores Imunológicos/metabolismo , Fatores Imunológicos/uso terapêutico , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Microambiente Tumoral/imunologia
10.
Nat Mater ; 19(11): 1244-1252, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32424368

RESUMO

Targeted immunomodulation of dendritic cells (DCs) in vivo will enable manipulation of T-cell priming and amplification of anticancer immune responses, but a general strategy has been lacking. Here we show that DCs concentrated by a biomaterial can be metabolically labelled with azido groups in situ, which allows for their subsequent tracking and targeted modulation over time. Azido-labelled DCs were detected in lymph nodes for weeks, and could covalently capture dibenzocyclooctyne (DBCO)-bearing antigens and adjuvants via efficient Click chemistry for improved antigen-specific CD8+ T-cell responses and antitumour efficacy. We also show that azido labelling of DCs allowed for in vitro and in vivo conjugation of DBCO-modified cytokines, including DBCO-IL-15/IL-15Rα, to improve priming of antigen-specific CD8+ T cells. This DC labelling and targeted modulation technology provides an unprecedented strategy for manipulating DCs and regulating DC-T-cell interactions in vivo.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunomodulação , Azidas/química , Azidas/metabolismo , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Química Click , Células Dendríticas/citologia , Humanos , Imunoterapia , Coloração e Rotulagem
11.
Biomater Sci ; 8(1): 266-277, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31690897

RESUMO

Allotransplantation offers the potential to restore the anatomy and function of injured tissues and organs, but typically requires life-long, systemic administration of immunosuppressive drugs to prevent rejection, which can result in serious complications. Targeting the immunosuppressive drug to the graft favors local tissue concentration versus systemic drug exposure and end-organ toxicity. This could reduce the overall dose and dosing frequency of immunosuppressive drugs, and improve the safety and efficacy of treatment. Here, we developed dibenzocyclooctyne (DBCO)-modified prodrugs of the immunosuppressive drugs tacrolimus, rapamycin and mycophenolic acid, and demonstrated their targeted conjugation both in vitro and in vivo to azido-modified hydrogels via Click chemistry. Such azido-modified hydrogels placed in transplanted tissues enable sustained local release of drugs, and could be repeatedly refilled with systemically administered acid-labile prodrugs after drug exhaustion. Thus, clickable prodrugs with degradable linkers provide new possibilities for graft targeted immunosuppression in the context of allotransplantation.


Assuntos
Química Click , Imunossupressores/química , Pró-Fármacos/química , Alginatos/química , Animais , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Meia-Vida , Hidrocarbonetos Cíclicos/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Imunossupressores/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ácido Micofenólico/química , Pró-Fármacos/metabolismo , Sirolimo/química , Tacrolimo/química
12.
Nat Mater ; 17(6): 528-534, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29507416

RESUMO

Existing strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR-PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations. Impressively, a single injection of the MSR-PEI vaccine using an E7 peptide completely eradicated large, established TC-1 tumours in about 80% of mice and generated immunological memory. When immunized with a pool of B16F10 or CT26 neoantigens, the MSR-PEI vaccine eradicated established lung metastases, controlled tumour growth and synergized with anti-CTLA4 therapy. Our findings from three independent tumour models suggest that the MSR-PEI vaccine approach may serve as a facile and powerful multi-antigen platform to enable robust personalized cancer vaccination.


Assuntos
Antígenos de Neoplasias/imunologia , Medicina de Precisão , Vacinação , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Composição de Medicamentos , Humanos , Camundongos
13.
J Control Release ; 267: 232-239, 2017 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-28739449

RESUMO

Convection enhanced delivery (CED) provides a powerful means to bypass the blood-brain barrier and drive widespread distribution of therapeutics in brain parenchyma away from the point of local administration. However, recent studies have detailed that the overall distribution of therapeutic nanoparticles (NP) following CED remains poor due to tissue inhomogeneity and anatomical barriers present in the brain, which has limited its translational applicability. Using probe NP, we first demonstrate that a significantly improved brain distribution is achieved by infusing small, non-adhesive NP via CED in a hyperosmolar infusate solution. This multimodal delivery strategy minimizes the hindrance of NP diffusion imposed by the brain extracellular matrix and reduces NP confinement within the perivascular spaces. We further recapitulate the distributions achieved by CED of this probe NP using a most widely explored biodegradable polymer-based drug delivery NP. These findings provide a strategy to overcome several key limitations of CED that have been previously observed in clinical trials.


Assuntos
Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Animais , Encéfalo/irrigação sanguínea , Convecção , Feminino , Masculino , Camundongos , Nanopartículas/química , Polímeros/administração & dosagem , Polímeros/química , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA