Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Clin Nutr ; 43(6): 1488-1494, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718720

RESUMO

BACKGROUND & AIMS: Leukocyte telomere length (LTL) is a biomarker of aging that may be influenced by dietary factors. Omega-3 fatty acids (n-3 FA) have been suggested to affect LTL. However, research on this effect has been inconclusive. The aim of the study was to test the hypothesis about the positive effect of n-3 FA on LTL. METHODS: Fat-1 transgenic mice, which can convert omega-6 fatty acids (n-6 FA) to n-3 FA and have elevated levels of endogenous n-3 FA in their tissues, were used to study the effects of n-3 FA on LTL at different ages. Blood samples from 10-month-old wild-type (WT) mice (n = 10) and fat-1 mice (n = 10) and 3-month-old WT mice (n = 5) and fat-1 mice (n = 5) were used to measure relative and absolute LTL. The levels of proteins critical for telomere maintenance were examined by Western blot analysis. RESULTS: Fat-1 transgenic mice had longer leukocyte telomeres than their WT siblings, suggesting a slower rate of age-related telomere shortening in fat-1 mice. In animals aged 10 months, the LTL was significantly longer in fat-1 than in WT mice (mean ± SEM; relative LTL: WT = 1.00 ± 0.09 vs. fat-1: 1.25 ± 0.05, P = 0.031; absolute LTL: WT = 64.41 ± 6.50 vs. fat-1: 78.53 ± 3.86, P = 0.048). The difference in LTL observed in three-month-old mice was insignificant, however the mean LTL was still longer in fat-1 mice than in the WT mice. Fat-1 mice also had abundant levels of two shelterin proteins: TRF1 (27%, P = 0.028) and TRF2 (47%, P = 0.040) (telomeric repeat binding factor 1 and 2) compared to WT animals. CONCLUSION: This study, for the first time in a unique animal model free of dietary confounders, has demonstrated that increased levels of n-3 FA in tissues can reduce telomere attrition. The data presented indicate the possibility of using omega-3 fatty acids to reduce accelerated telomere attrition and, consequently, counteract premature aging and reduce the risk of age-related diseases.

2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612915

RESUMO

In pigs, iron deficiency anemia (IDA) is a common disorder that occurs during the early postnatal period, leading to the stunted growth and increased mortality of piglets. The main cause of IDA is low iron stores in the liver of newborn piglets; these stores constitute the main source of iron needed to satisfy the erythropoietic requirements of the piglets in their first weeks of life. Insufficient iron stores in piglets are usually due to the inadequate placental iron transfer from the sow to the fetuses. Therefore, iron supplementation in pregnant sows has been implemented to enhance placental iron transfer and increase iron accumulation in the liver of the fetuses. Over the years, several oral and parenteral approaches have been attempted to supplement sows with various iron preparations, and consequently, to improve piglets' red blood cell indices. However, there is debate with regard to the effectiveness of iron supplementation in pregnant sows for preventing IDA in newborn piglets. Importantly, this procedure should be carried out with caution to avoid iron over-supplementation, which can lead to iron toxicity. This article aims to critically review and evaluate the use of iron supplementation in pregnant sows as a procedure for preventing IDA in piglets.


Assuntos
Anemia Ferropriva , Feminino , Gravidez , Animais , Suínos , Anemia Ferropriva/prevenção & controle , Anemia Ferropriva/veterinária , Ferro , Placenta , Fígado , Suplementos Nutricionais
3.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232742

RESUMO

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Assuntos
Transportador de Cobre 1 , Cobre , Células Epiteliais , Túbulos Renais Proximais , Síndrome dos Cabelos Torcidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/etiologia , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC31/genética , Proteínas SLC31/metabolismo
4.
Nutrients ; 14(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36145097

RESUMO

Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres-the food compound's ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length.


Assuntos
Ácidos Graxos Ômega-3 , Telômero , Animais , Senescência Celular , Estudos Transversais , Ácidos Graxos Ômega-3/farmacologia , Humanos , Inflamação , Ratos , Encurtamento do Telômero
5.
Genes (Basel) ; 12(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34573364

RESUMO

Iron is an essential nutrient during all stages of mammalian development. Studies carried out over the last 20 years have provided important insights into cellular and systemic iron metabolism in adult organisms and led to the deciphering of many molecular details of its regulation. However, our knowledge of iron handling in prenatal development has remained remarkably under-appreciated, even though it is critical for the health of both the embryo/fetus and its mother, and has a far-reaching impact in postnatal life. Prenatal development requires a continuous, albeit quantitatively matched with the stage of development, supply of iron to support rapid cell division during embryogenesis in order to meet iron needs for erythropoiesis and to build up hepatic iron stores, (which are the major source of this microelement for the neonate). Here, we provide a concise overview of current knowledge of the role of iron metabolism-related genes in the maintenance of iron homeostasis in pre- and post-implantation development based on studies on transgenic (mainly knock-out) mouse models. Most studies on mice with globally deleted genes do not conclude whether underlying in utero iron disorders or lethality is due to defective placental iron transport or iron misregulation in the embryo/fetus proper (or due to both). Therefore, there is a need of animal models with tissue specific targeted deletion of genes to advance the understanding of prenatal iron metabolism.


Assuntos
Desenvolvimento Embrionário/genética , Ferro/metabolismo , Proteínas/genética , Proteínas/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Heme , Camundongos Transgênicos , Gravidez
6.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576090

RESUMO

Iron deficiency is the most common mammalian nutritional disorder. However, among mammalian species iron deficiency anemia (IDA), occurs regularly only in pigs. To cure IDA, piglets are routinely injected with high amounts of iron dextran (FeDex), which can lead to perturbations in iron homeostasis. Here, we evaluate the therapeutic efficacy of non-invasive supplementation with Sucrosomial iron (SI), a highly bioavailable iron supplement preventing IDA in humans and mice and various iron oxide nanoparticles (IONPs). Analysis of red blood cell indices and plasma iron parameters shows that not all iron preparations used in the study efficiently counteracted IDA comparable to FeDex-based supplementation. We found no signs of iron toxicity of any tested iron compounds, as evaluated based on the measurement of several toxicological markers that could indicate the occurrence of oxidative stress or inflammation. Neither SI nor IONPs increased hepcidin expression with alterations in ferroportin (FPN) protein level. Finally, the analysis of the piglet gut microbiota indicates the individual pattern of bacterial diversity across taxonomic levels, independent of the type of supplementation. In light of our results, SI but not IONPs used in the experiment emerges as a promising nutritional iron supplement, with a high potential to correct IDA in piglets.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Suplementos Nutricionais , Compostos Férricos/administração & dosagem , Compostos Férricos/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro/química , Administração Oral , Anemia Ferropriva/sangue , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Duodeno/metabolismo , Compostos Férricos/farmacologia , Compostos Ferrosos/uso terapêutico , Hepcidinas/sangue , Hepcidinas/genética , Masculino , Microbiota , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos
7.
Diagnostics (Basel) ; 11(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34359361

RESUMO

Hereditary hemochromatosis (HH) is a genetic disease leading to excessive iron absorption, its accumulation, and oxidative stress induction causing different organ damage, including the heart. The process of cardiac involvement is slow and lasts for years. Cardiac pathology manifests as an impaired diastolic function and cardiac hypertrophy at first and as dilatative cardiomyopathy and heart failure with time. From the moment of heart failure appearance, the prognosis is poor. Therefore, it is crucial to prevent those lesions by upfront therapy at the preclinical phase of the disease. The most useful diagnostic tool for detecting cardiac involvement is echocardiography. However, during an early phase of the disease, when patients do not present severe abnormalities in serum iron parameters and severe symptoms of other organ involvement, heart damage may be overlooked due to the lack of evident signs of cardiac dysfunction. Considerable advancement in echocardiography, with particular attention to speckle tracking echocardiography, allows detecting discrete myocardial abnormalities and planning strategy for further clinical management before the occurrence of substantial heart damage. The review aims to present the current state of knowledge concerning cardiac involvement in HH. In addition, it could help cardiologists and other physicians in their everyday practice with HH patients.

8.
Am J Hematol ; 96(6): 659-670, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33684239

RESUMO

The demand for iron is high in pregnancy to meet the increased requirements for erythropoiesis. Even pregnant females with initially iron-replete stores develop iron-deficiency anemia, due to inadequate iron absorption. In anemic females, the maternal iron supply is dedicated to maintaining iron metabolism in the fetus and placenta. Here, using a mouse model of iron deficiency in pregnancy, we show that iron recycled from senescent erythrocytes becomes a predominant source of this microelement that can be transferred to the placenta in females with depleted iron stores. Ferroportin is a key protein in the molecular machinery of cellular iron egress. We demonstrate that under iron deficiency in pregnancy, levels of ferroportin are greatly reduced in the duodenum, placenta and fetal liver, but not in maternal liver macrophages and in the spleen. Although low expression of both maternal and fetal hepcidin predicted ferroportin up-regulation in examined locations, its final expression level was very likely correlated with tissue iron status. Our results argue that iron released into the circulation of anemic females is taken up by the placenta, as evidenced by high expression of iron importers on syncytiotrophoblasts. Then, a substantial decrease in levels of ferroportin on the basolateral side of syncytiotrophoblasts, may be responsible for the reduced transfer of iron to the fetus. As attested by the lowest decrease in iron content among analyzed tissues, some part is retained in the placenta. These findings confirm the key role played by ferroportin in tuning iron turnover in iron-deficient pregnant mouse females and their fetuses.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Deficiências de Ferro , Ferro da Dieta/administração & dosagem , Fígado/metabolismo , Complicações na Gravidez/metabolismo , Baço/metabolismo , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Citocinas/sangue , Duodeno/metabolismo , Envelhecimento Eritrocítico , Índices de Eritrócitos , Feminino , Feto/metabolismo , Hemoglobinas/metabolismo , Hepcidinas/biossíntese , Hepcidinas/genética , Ferro/metabolismo , Fígado/embriologia , Macrófagos/metabolismo , Troca Materno-Fetal , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Proteínas Musculares/sangue , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Fagocitose , Placenta/metabolismo , Gravidez , Regulação para Cima
9.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092142

RESUMO

In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.


Assuntos
Heme Oxigenase-1/deficiência , Hemólise , Ferro/metabolismo , Rim/metabolismo , Insuficiência Renal/metabolismo , Anemia/sangue , Anemia/terapia , Animais , Animais Recém-Nascidos , Contagem de Eritrócitos , Feminino , Heme/metabolismo , Heme Oxigenase-1/genética , Ferro/urina , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal/genética , Insuficiência Renal/terapia
10.
Animals (Basel) ; 10(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610535

RESUMO

BACKGROUND: The similarities between swine and humans in physiological and genomic patterns, as well as significant correlation in size and anatomy, make pigs an useful animal model in nutritional studies during pregnancy. In humans and pigs iron needs exponentially increase during the last trimester of pregnancy, mainly due to increased red blood cell mass. Insufficient iron supply during gestation may be responsible for the occurrence of maternal iron deficiency anemia and decreased iron status in neonates. On the other hand, preventive iron supplementation of non-anemic mothers may be of potential risk due to iron toxicity. Several different regimens of iron supplementation have been applied during pregnancy. The majority of oral iron supplementations routinely applied to pregnant sows provide inorganic, non-heme iron compounds, which exhibit low bioavailability and intestinal side effects. The aim of this study was to check, using pig as an animal model, the effect of sucrosomial ferric pyrophosphate (SFP), a new non-heme iron formulation on maternal and neonate iron and hematological status, placental transport and pregnancy outcome; Methods: Fifteen non-anemic pregnant sows were recruited to the experiment at day 80 of pregnancy and randomized into the non-supplemented group (control; n = 5) and two groups receiving oral iron supplementation-sows given sucrosomial ferric pyrophosphate, 60 mg Fe/day (SFP; n = 5) (SiderAL®, Pisa, Italy) and sows given ferrous sulfate 60 mg Fe/day (Gambit, Kutno, Poland) (FeSO4; n = 5) up to delivery (around day 117). Biological samples were collected from maternal and piglet blood, placenta and piglet tissues. In addition, data on pregnancy outcome were recorded.; Results: Results of our study show that both iron supplements do not alter neither systemic iron homeostasis in pregnant sows nor their hematological status at the end of pregnancy. Moreover, we did not detect any changes of iron content in the milk and colostrum of iron supplemented sows in comparison to controls. Neonatal iron status of piglets from iron supplemented sows was not improved compared with the progeny of control females. No statistically significant differences were found in average piglets weight and number of piglets per litter between animals from experimental groups. The placental expression of iron transporters varied depending on the iron supplement.

11.
Biol Trace Elem Res ; 196(2): 472-480, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31701465

RESUMO

Heme is an efficient dietary iron supplement applied in humans and animals to prevent iron deficiency anemia (IDA). We have recently reported that the use of bovine hemoglobin as a dietary source of heme iron efficiently counteracts the development of IDA in young piglets, which is the common problem in pig industry. Here, we used maternal Polish Large White and terminal sire breed (L990) pigs differing in traits for meat production to evaluate the long-term effect of split supplementation with intramuscularly administered small amount of iron dextran and orally given hemoglobin on hematological indices, iron status, growth performance, slaughter traits, and meat quality at the end of fattening. Results of our study show that in pigs of both breeds split supplementation was effective in maintaining physiological values of RBC and blood plasma iron parameters as well as growth performance, carcass parameters, and meat quality traits. Our results prove the effectiveness of split iron supplementation of piglets in a far-reach perspective.


Assuntos
Eritrócitos/efeitos dos fármacos , Hemoglobinas/metabolismo , Complexo Ferro-Dextran/farmacologia , Ferro/sangue , Carne/análise , Suínos , Administração Oral , Animais , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Hemoglobinas/administração & dosagem , Complexo Ferro-Dextran/administração & dosagem , Masculino , Polônia , Suínos/anatomia & histologia , Suínos/sangue , Suínos/crescimento & desenvolvimento , Suínos/metabolismo , Fatores de Tempo , Aumento de Peso/efeitos dos fármacos
12.
Sci Rep ; 9(1): 11102, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366967

RESUMO

Moderate intravascular hemolysis is a common condition in newborns. It is followed by the accumulation of bilirubin, which is a secondary product of the activity of heme oxygenase-1, an enzyme that catalyzes the breakdown of heme released from disrupted erythrocytes and taken up by hepatic macrophages. Although these cells are a major site of enzymatic heme breakdown in adults, we show here that epithelial cells of proximal tubules in the kidneys perform the functions of both heme uptake and catabolism in mouse neonates. A time-course study examining mouse pups during the neonatal period showed a gradual recovery from hemolysis, and concomitant decreases in the expression of heme-related genes and non-heme iron transporters in the proximal tubules. By adjusting the expression of iron-handling proteins in response to the disappearance of hemolysis in mouse neonates, the kidneys may play a role in the detoxification of iron and contribute to its recirculation from the primary urine to the blood.


Assuntos
Heme/metabolismo , Hemólise/fisiologia , Ferro/metabolismo , Rim/metabolismo , Animais , Bilirrubina/metabolismo , Modelos Animais de Doenças , Eritrócitos/metabolismo , Heme Oxigenase-1/metabolismo , Masculino , Camundongos
13.
Pharmaceuticals (Basel) ; 12(1)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699979

RESUMO

The authors wish to make the following corrections to this paper [¹]: the term "liposomal" should be replaced with the term "sucrosomial" in the following places [...].

14.
Pharmaceuticals (Basel) ; 11(4)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467279

RESUMO

In pigs, iron deficiency anemia (IDA) is the most prevalent deficiency disorder during the early postnatal period, frequently developing into a serious illness. On the other hand, in humans, only low-birth-weight infants, including premature infants, are especially susceptible to developing IDA. In both human and pig neonates, the initial cause of IDA is low birth iron stores. In piglets this shortage of stored iron results mainly from genetic selection over the past few decades for large litter sizes and high birth weights. As a consequence, pregnant sows cannot provide a sufficient amount of iron to the increasing number of developing fetuses. Supplementation with iron is a common practice for the treatment of IDA in piglets. For decades, the preferred procedure for delivering iron supplements during early life stages has been through the intramuscular injection of a large amount of iron dextran. However, this relatively simple therapy, which in general, efficiently corrects IDA, may generate toxic effects, and by inducing hepcidin expression, may decrease bioavailability of supplemental iron. New iron supplements are considered herein with the aim to combine the improvement of hematological status, blunting of hepcidin expression, and minimizing the toxicity of the administered iron. We propose that iron-deficient piglets constitute a convenient animal model for performing pre-clinical studies with iron supplements.

15.
PLoS One ; 13(6): e0198843, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29906278

RESUMO

The aim of this study was to evaluate the influence of elevated temperature on bovine oviduct epithelial cells (BOECs), based on the expression and localization of both heat shock protein 70 (HSP70), responsible for the cellular defence mechanism, and oviduct specific glycoprotein 1 (OVGP1) which is the most important embryotrophic protein. BOECs were cultured alone and co-cultured with cattle embryos at control (38.5°C) and elevated temperature (41°C) for 168 h. The elevated temperature had no effect on the viability of BOECs but exerted a negative effect on embryo development. The elevated temperature increased the expression of HSP70 and decreased the expression of OVGP1 at both mRNA and protein levels in BOECs cultured alone and those co-cultured with embryos. However, the presence of embryos limited the decrease in OVGP1 expression in BOECs at elevated temperature but did not alter the expression of HSP70. These results demonstrate for the first time the influence of elevated temperature on BOECs, consequently providing insights into the interactions between the embryo and the oviduct at elevated temperature.


Assuntos
Desenvolvimento Embrionário/fisiologia , Tubas Uterinas/citologia , Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta/efeitos adversos , Animais , Bovinos , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos , Células Epiteliais , Feminino
16.
Biotechnol Adv ; 36(6): 1586-1607, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684502

RESUMO

Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.


Assuntos
Proliferação de Células , Sistemas de Liberação de Medicamentos , Músculo Liso Vascular/citologia , Animais , Ciclo Celular , Células Cultivadas , Humanos , Transdução de Sinais , Doenças Vasculares
17.
Biotechnol Adv ; 36(6): 1608-1621, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678389

RESUMO

Many natural products have been so far tested regarding their potency to inhibit vascular smooth muscle cell proliferation, a process involved in atherosclerosis, pulmonary hypertension and restenosis. Compounds studied in vitro and in vivo as VSMC proliferation inhibitors include, for example indirubin-3'-monoxime, resveratrol, hyperoside, plumericin, pelargonidin, zerumbone and apamin. Moreover, taxol and rapamycin, the most prominent compounds applied in drug-eluting stents to counteract restenosis, are natural products. Numerous studies show that natural products have proven to yield effective inhibitors of vascular smooth muscle cell proliferation and ongoing research effort might result in the discovery of further clinically relevant compounds.


Assuntos
Produtos Biológicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Músculo Liso Vascular/citologia , Animais , Células Cultivadas , Humanos , Transdução de Sinais , Doenças Vasculares
18.
PLoS One ; 12(7): e0181117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704474

RESUMO

Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.


Assuntos
Anemia Ferropriva/dietoterapia , Duodeno/metabolismo , Perfilação da Expressão Gênica/métodos , Heme Oxigenase-1/genética , Heme/administração & dosagem , Administração Oral , Anemia Ferropriva/genética , Anemia Ferropriva/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Heme/uso terapêutico , Heme Oxigenase-1/química , Humanos , Suínos
19.
PLoS One ; 12(5): e0176800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542246

RESUMO

Iron regulatory protein 1 (IRP1) is a cytosolic bifunctional [4Fe-4S] protein which exhibits aconitase activity or binds iron responsive elements (IREs) in untranslated regions of specific mRNA encoding proteins involved in cellular iron metabolism. Superoxide radical (O2.-) converts IRP1 from a [4Fe-4S] aconitase to a [3Fe-4S] "null" form possessing neither aconitase nor trans-regulatory activity. Genetic ablation of superoxide dismutase 1 (SOD1), an antioxidant enzyme that acts to reduce O2.- concentration, revealed a new O2.--dependent regulation of IRP1 leading to the reduction of IRP1 protein level and in consequence to the diminution of IRP1 enzymatic and IRE-binding activities. Here, we attempted to establish whether developmental changes in SOD1 activity occurring in the mouse liver, impact IRP1 expression. We show no correlation between hepatic SOD1 activity and IRP1 protein level neither in pre- nor postnatal period probably because the magnitude of developmental fluctuations in SOD1 activity is relatively small. The comparison of SOD1 activity in regards to IRP1 protein level in the liver of threeSOD1 genotypes (Sod1+/+, Sod1+/- and Sod1-/-) demonstrates that only drastic SOD1 deficiency leads to the reduction of IRP1 protein level. Importantly, we found that in the liver of fetuses lacking SOD1, IRP1 is not down-regulated. To investigate O2.--dependent regulation of IRP1 in a cellular model, we exposed murine RAW 264.7 and bone marrow-derived macrophages to paraquat, widely used as a redox cycler to stimulate O2.-production in cells. We showed that IRP1 protein level as well as aconitase and IRE-binding activities are strongly reduced in macrophages treated with paraquat. The analysis of the expression of IRP1-target genes revealed the increase in L-ferritin protein level resulting from the enhanced transcriptional regulation of the LFt gene and diminished translational repression of L-ferritin mRNA by IRP1. We propose that O2.--dependent up-regulation of this cellular protectant in paraquat-treated macrophages may counterbalance iron-related toxic effects of O2.-.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Proteína 1 Reguladora do Ferro/metabolismo , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Superóxido Dismutase-1/deficiência , Superóxidos/metabolismo , Animais , Apoferritinas/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína 1 Reguladora do Ferro/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1410-1421, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28219768

RESUMO

Mosaic mutant mice displaying functional dysfunction of Atp7a copper transporter (the Menkes ATPase) are an established animal model of Menkes disease and constitute a convenient tool for investigating connections between copper and iron metabolisms. This model allows to explore changes in iron metabolism in suckling mutant mice suffering from systemic copper deficiency as well as in young and adult ones undergone copper therapy, which reduces lethal effect of the Atp7a gene mutation. Our recent study demonstrated that 14-day-old mosaic mutant males display blood cell abnormalities associated with intravascular hemolysis, and show disturbances in the functioning of the hepcidin-ferroportin regulatory axis, which controls systemic iron homeostasis. We thus aimed to check whether copper supplementation recovers mutants from hemolytic insult and rebalance systemic iron regulation. Copper supplementation of 14-day-old mosaic mutants resulted in the reestablishment of hematological status, attenuation of hepicidin and concomitant induction of the iron exporter ferroportin/Slc40a1 expression in the liver, down-regulated in untreated mutants. Interestingly, treatment of wild-type males with copper, induced hepcidin-independent up-regulation of ferroportin protein level in hepatic macrophages in both young and adult (6-month-old) animals. Stimulatory effect of copper on ferroportin mRNA and protein levels was confirmed in bone marrow-derived macrophages isolated from both wild-type and mosaic mutant males. Our study indicates that copper is an important player in the regulation of the Slc40a1 gene expression.


Assuntos
Proteínas de Transporte de Cátions/biossíntese , Cobre/farmacologia , Regulação da Expressão Gênica , Hemólise , Mosaicismo , Animais , Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hemólise/efeitos dos fármacos , Hemólise/genética , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA