Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 8(3): e2300360, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38129324

RESUMO

The small compound Pitstop-2 is a recent potent inhibitor of clathrin-mediated endocytosis (CME), widely used in biomedical research areas. In recent years, however, it is observed that it exhibits CME-independent inhibitory effects on nuclear pore complexes (NPCs), the nucleocytoplasmic gatekeepers. NPCs are elaborate proteinaceous transport nano-machineries of crucial physiological importance rendering them novel targets for various medical applications. They mediate all nucleocytoplasmic transport forming a physiologically essential selective nucleocytoplasmic barrier. The direct Pitstop-2 disruptive effects on NPCs manifested themselves at both the structural and functional integrity levels. Moreover, they are massive, acute, and detectable at concentrations equal to CME-inhibitory concentrations. Pitstop-2 inhibits CME by binding to the terminal ß-propeller domain of the heavy chain of clathrin. Several NPC scaffold proteins, critical for the structural and functional integrity of the NPC, possess ß-propeller folds. Herein, utilizing computational docking analysis, it is demonstrated that Pitstop-2 exhibits particularly high binding affinities to ß-propeller folds of NPC scaffold proteins, similar to its binding affinity to the terminal ß-propeller domain of clathrin. The authors, therefore, conclude that Pitstop-2 is a potent disruptor of NPCs, an activity which, separately or in synergy with CME inhibition, may be exploited for a myriad of pharmacological applications.


Assuntos
Pesquisa Biomédica , Poro Nuclear , Sulfonamidas , Tiazolidinas , Clatrina , Emoções
2.
Bioeng Transl Med ; 8(4): e10425, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476059

RESUMO

Clathrin-mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop-2 as a potent CME inhibitor, we and others have reported on substantial clathrin-independent inhibitory effects. Herein, we developed and experimentally validated a novel fluorescent derivative of Pitstop-2, termed RVD-127, to clarify Pitstop-2 diverse effects. Using RVD-127, we were able to trace additional protein targets of Pitstop-2. Besides inhibiting CME, Pitstop-2 and RVD-127 proved to directly and reversibly bind to at least two members of the small GTPase superfamily Ran and Rac1 with particularly high efficacy. Binding locks the GTPases in a guanosine diphosphate (GDP)-like conformation disabling their interaction with their downstream effectors. Consequently, overall cell motility, mechanics and nucleocytoplasmic transport integrity are rapidly disrupted at inhibitor concentrations well below those required to significantly reduce CME. We conclude that Pitstop-2 is a highly potent, reversible inhibitor of small GTPases. The inhibition of these molecular switches of diverse crucial signaling pathways, including nucleocytoplasmic transport and overall cell dynamics and motility, clarifies the diversity of Pitstop-2 activities. Moreover, considering the fundamental importance and broad implications of small GTPases in physiology, pathophysiology and drug development, Pitstop-2 and RVD-127 open up novel avenues.

3.
Adv Sci (Weinh) ; 8(22): e2102757, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34658143

RESUMO

Nuclear pore complexes (NPCs) selectively mediate all nucleocytoplasmic transport and engage in fundamental cell-physiological processes. It is hypothesized that NPCs are critical for malignant transformation and survival of lung cancer cells, and test the hypothesis in lowly and highly metastatic non-small human lung cancer cells (NSCLCs). It is shown that malignant transformation is paralleled by an increased NPCs density, and a balanced pathological weakening of the physiological stringency of the NPC barrier. Pharmacological interference using barrier-breaking compounds collapses the stringency. Concomitantly, it induces drastic overall structural changes of NSCLCs, terminating their migration. Moreover, the degree of malignancy is found to be paralleled by substantially decreased lamin A/C levels. The latter provides crucial structural and mechanical stability to the nucleus, and interacts with NPCs, cytoskeleton, and nucleoskeleton for cell maintenance, survival, and motility. The recent study reveals the physiological importance of the NPC barrier stringency for mechanical and structural resilience of normal cell nuclei. Hence, reduced lamin A/C levels in conjunction with controlled pathological weakening of the NPC barrier stringency may facilitate deformability of NSCLCs during the metastasis steps. Modulation of the NPC barrier presents a potential strategy for suppressing the malignant phenotype or enhancing the effectiveness of currently existing chemotherapeutics.


Assuntos
Neoplasias Pulmonares/metabolismo , Membrana Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Camundongos , Poro Nuclear/metabolismo
4.
Curr Drug Targets ; 21(12): 1225-1236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32386489

RESUMO

Acetaminophen is a widely used analgesic for pain management, especially useful in chronic diseases, such as rheumatoid arthritis. However, easy access to this medicine has increased the occurrence of episodes of poisoning. Patients often develop severe liver damage, which may quickly lead to death. Consequently, numerous studies have been conducted to identify new biomarkers that allow the prediction of the degree of acetaminophen intoxication and thus intervene in a timely manner to save patients' lives. This review highlights the main mechanisms of the induction and progression of liver damage arising from acetaminophen poisoning. In addition, we have discussed the possibility of using new clinical biomarkers for detecting acetaminophen poisoning.


Assuntos
Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inflamação/metabolismo , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Inflamação/induzido quimicamente , Oxirredução
5.
Bioorg Chem ; 98: 103727, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179285

RESUMO

Organic selenium compounds are widely associated with numerous pharmacological properties. However, selenium compounds, such as Ebselen (Ebs) and Diphenyl Diselenide (DPDS), could interact with mitochondrial respiratory complexes, especially with thiol groups. The present study evaluated whether the insertion of functional groups, o-methoxy, and p-methyl on organic selenium compounds promotes changes in mitochondrial functioning parameters and whether this is related to antibacterial activity. Here we tested some in vitro parameters after the exposure of mitochondria to different concentrations of ß-selenoamines 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS 1,2-bis(2-methoxyphenyl)diselenide (C3) and 1,2-bisp-tolyldiselenide (C4). We also evaluated the antibacterial activity of ß-selenoamines and diselenides against Methicillin-resistant Staphylococcus aureus and Escherichia coli. Our results showed that o-methoxy insertion increased the antioxidant properties, without affecting the mitochondrial membrane potential. The compounds with a p-methyl insertion affected the mitochondrial membrane potential and significantly decreased the State III respiration and RCR. Besides, the p-methyl compounds presented antibacterial activity at lower concentrations than those shown in o-methoxy, precisely by the same mechanism that promotes damage to thiol groups and better absorption in gram-positive bacteria due to their relationship with cell wall constituents. Finally, our study confirms that structural modifications in organic selenium compounds provide changes in mitochondrial functioning but also raise their antibacterial effect. This strategy can be used as a target for the development of new enough potent antibacterial to restrict the advance of resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
6.
J Tradit Complement Med ; 9(4): 383-392, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453135

RESUMO

The production of reactive species over physiological levels associated to pathogenic bacteria could represent a high risk for many diseases. The Rosmarinus officinalis L. is used around the world due its pharmacological proprieties. So, in this study our aim is to test for the first time if R. officinalis L. extract (eeRo) and its fractions (DCM, EA, ButOH) could have better or similar antioxidant action to standars and among themselves in vitro or ex vivo, in brain, stomach and liver of rats. Moreover, we intend to clarify their possible effects on pathogenic bacteria. The eeRo was obtained from the dried leaves subjected to an alcoholic extraction and fractioned. The quantification of the constituents of eeRo and fractions were done by HPLC. The antioxidant proprieties of R. officinalis was analyzed by DPPH•- radical scavenging, total antioxidant, dichlorofluorescein, lipid peroxidation and sodium nitroprusside -induced lipid peroxidation assays. The Minimum inhibitory concentrations of R. officinalis L. were tested with standard strains of danger bacteria. The eeRo, DCM, EA had significant total antioxidant and DPPH•- radical scavenging activities. The DCM and eeRo got significant effects against basal levels of reactive species in liver, stomach and brain. The eeRo and DCM protected the liver and brain against lipid peroxidation. The eeRo, DCM, EA and ButOH had inhibitory effect in the Gram-positive and Gram-negative bacteria. In general way, the DCM and eeRo had the best antioxidant and antibacterial effects among all tested fractions.

7.
Arch Physiol Biochem ; 125(1): 85-91, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29431478

RESUMO

This study investigate the effects of high-intensity interval training (HIIT) on systemic levels of inflammatory and hormonal markers in postmenopausal women with metabolic syndrome (MS). Fifteen postmenopausal women with MS completed the training on treadmills. Functional, body composition parameters, maximal oxygen uptake (VO2max), and lipid profile were assessed before and after HIIT. Serum or plasma levels of cytokines and hormonal markers were measured along the intervention. The analysis of messenger RNA (mRNA) expression of these cytokines was performed in peripheral blood mononuclear cells (PBMC). VO2max and some anthropometric parameters were improved after HIIT, while decreased levels of proinflammatory markers and increased levels of interleukin-10 (IL-10) were also found. Adipokines were also modulated after 12 weeks or training. The mRNA expression of the studied genes was unchanged after HIIT. In conclusion, HIIT benefits inflammatory and hormonal axis on serum or plasma samples, without changes on PBMC of postmenopausal MS patients.


Assuntos
Adipocinas/metabolismo , Treinamento Intervalado de Alta Intensidade , Síndrome Metabólica/metabolismo , Pós-Menopausa , Adipocinas/sangue , Biomarcadores/metabolismo , Composição Corporal , Feminino , Regulação da Expressão Gênica , Hormônios/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Síndrome Metabólica/sangue , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade
8.
Microb Pathog ; 125: 393-400, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30290269

RESUMO

The antibacterial activity of sulfadiazine Au-PPh3, sulfadiazine Ph2P-Au-Au-PPh2, sulfamethoxazole Au-PPh3, sulfamethoxazole Ph2P-Au-Au-PPh2, sulfamethoxazole Au-PPh3 were tested against Pseudomonas aeruginosa. The antibacterial activity of sulfonamide was tested against P. aeruginosa through the MIC assay, quantitative analysis of biofilm inhibition and observation of biofilm formation with fluorescence microscopy. Besides, the compounds presented remarkable inhibition of P. aeruginosa biofilm formation. Furthermore, molecular docking was performed to identify the key structural features of these compounds with the binding site of the LasR receptor.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ouro/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sulfonamidas/farmacologia , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ouro/química , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Ligação Proteica , Pseudomonas aeruginosa/fisiologia , Sulfonamidas/química , Transativadores/química , Transativadores/metabolismo
9.
Microb Pathog ; 123: 440-448, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30086343

RESUMO

The drug-resistant strains of Staphylococcus aureus have been considered as one of the serious health threats, which are related to high patient hospitalization rates. Besides, Staphylococcus aureus biofilm formation exhibits a drug-tolerant nature and shows nonspecific resistance against a broad-spectrum of antibiotics. The emergence of drug-resistant bacteria stimulated the development of novel medicines as a strategy to control infections. In this study, we evaluated the antibacterial and anti-biofilm activity of gold-complexed sulfonamides against Staphylococcus aureus strains such as methicillin-resistant S. aureus and clinical isolates. Our data showed that the exposure of gold-complexed sulfonamides promoted a remarkable reduction in the bacterial adhesion. Also, confocal microscopy displayed the effects of the compounds on in the bacterial cell biofilm, revealed that the compounds decreased the biofilm formation. Our results also demonstrated that gold-complexed sulfonamides exhibited potent antibacterial activity against Staphylococcus aureus strains. Besides, all compounds presented a synergic antibacterial activity when were associated with classical antibiotics. Gold-complexed sulfonamide compounds did not promote toxic effects on Caenorhabditis elegans. Thus, our results showed that the coordination of sulfonamide with gold is a promising alternative in the development of safe and active compounds against methicillin-resistant and clinical isolates S. aureus.


Assuntos
Biofilmes/efeitos dos fármacos , Ouro/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Brasil , Caenorhabditis elegans/efeitos dos fármacos , Sinergismo Farmacológico , Ouro/química , Humanos , Resistência a Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Sulfonamidas/química , Testes de Toxicidade
10.
Medicina (Kaunas) ; 53(4): 285-293, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28888470

RESUMO

BACKGROUND AND OBJECTIVE: Although hard training is mandatory in elite level futsal training, few studies have proposed a biochemical follow up in futsal players during a whole season. Therefore, the aim of this study was to compare functional and biochemical markers in Brazilian elite level futsal players throughout a competition season. MATERIALS AND METHODS: Eight players aged 25.5±5.4 years were evaluated at three time points: preseason (T1), immediately before the FIFA®-Intercontinental-Futsal-Cup (T2), and at the end of the season (T3), with a tapering period of 1 week before T2. Functional parameters (weight, height, body fat, VO2max, heart rate, and distance ran) and blood sampling for cell count and lipid profile (cholesterol, HDL-C, LDL-C, triglycerides) were assessed at each time point. After, a Yo-Yo R2 test was carried out in each time point (T1, T2 and T3) and blood samples to assess skeletal muscle damage (creatine kinase [CK], lactate dehydrogenase [LDH]), inflammation (C-reactive protein [CRP]) and oxidative stress markers (ischemia modified albumin [IMA], and advanced oxidation protein products [AOPP]) were obtained before and after the tests. RESULTS: Although functional parameters did not change throughout the season, greater total number of erythrocytes (P≤0.05), and hemoglobin (P≤0.05) were found at T2 compared to T1. Similarly, lower LDH (P≤0.05) and CK (P≤0.05) levels were found at T2 compared to T1. CPR levels were also decreased at T2 in comparison to T1 both before and after Yo-Yo R2 test (P≤0.05), while IMA and AOPP levels showed only a season effect (P≤0.05). CONCLUSIONS: The tapering strategy was successful considering players presented lower levels of muscle damage, inflammation and oxidative stress makers before T2, which preceded the main championship of the year. These results are of great relevance, considering the team won the FIFA®-Intercontinental-Futsal-Cup, which happened at T2. Thus, it seems that routine-based biochemical markers may be useful as training control means in this population.


Assuntos
Adaptação Fisiológica , Desempenho Atlético , Frequência Cardíaca , Estresse Oxidativo , Adulto , Brasil , Proteína C-Reativa/análise , Teste de Esforço , Humanos , Masculino , Estações do Ano , Adulto Jovem
11.
J Biochem Mol Toxicol ; 31(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28800171

RESUMO

Thioacetamide (TAA) is a hepatotoxin that rapidly triggers the necrotic process and oxidative stress in the liver. Nevertheless, organic selenium compounds, such as ß-selenoamines, can be used as pharmacological agents to diminish the oxidative damage. Thus, the aim of this study was to investigate the protective effect of the antioxidant ß-selenoamines on TAA-induced oxidative stress in mice. Here, we observed that a single intraperitoneal injection of TAA (200 mg/kg) dramatically elevated some parameters of oxidative stress, such as lipid peroxidation and reactive oxygen species (ROS) production, as well as depleted cellular antioxidant defenses. In addition, TAA-induced edema and morphological changes in the liver, which correlate with high serum aspartate and alanine aminotransferase enzyme activities, and a decrease in cell viability. Conversely, a significant reduction in liver lipid peroxidation, ROS production, and edema was observed in animals that received an intraperitoneal injection of ß-selenoamines (15.6 mg/kg) 1 h after TAA administration.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Aminas/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Tioacetamida
12.
Microb Pathog ; 99: 229-235, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27554273

RESUMO

Rapidly growing mycobacteria (RGM) are opportunistic pathogens found in the environment. When in biofilms, mycobacteria is highly resistant to antibacterial treatments. The purpose of this study is to evaluate the antibiofilm activity of antimicrobials commonly used in therapy against mycobacteria. The antimicrobial susceptibility of Mycobacterium abscessus, Mycobacterium fortuitum and Mycobacterium massiliense was determined in planktonic and sessile populations. The antimicrobials amikacin, ciprofloxacin, clarithromycin, doxycycline, imipenem and sulfamethoxazole were tested. For each drug, it was evaluated the susceptibility of the pathogen, the ability to inhibit biofilm formation and the resistance of biofilms to antimicrobial activity. Results showed although, the antimicrobials tested are used as an alternative therapy for RGM, M. abscessus proved to be resistant to clarithromycin, beside that, M. massiliense showed a resistant profile to clarithromycin and sulfamethoxazole. Moreover, the inhibition of biofilm formation and its destruction have not been fully met. Considering that the biofilms are a known form of bacterial resistance, the failure of alternatives to inhibit or destroy biofilms can trigger the recurrence of infections. In RGM, besides causing treatment failures, biofilms are a factor of pathogenic risk, since these microorganisms are found in environmental sources and can cause infections easily.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Micobactérias não Tuberculosas/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana , Violeta Genciana/análise , Testes de Sensibilidade Microbiana , Micobactérias não Tuberculosas/fisiologia , Espectrofotometria , Coloração e Rotulagem
13.
Int J Nanomedicine ; 10: 5663-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379436

RESUMO

Selenium compounds, such as diphenyl diselenide (DPDS), have been shown to exhibit biological activity, including antioxidant effects. However, the use of DPDS in pharmacology is limited due to in vivo pro-oxidative effects. In addition, studies have shown that DPDS-loaded nanocapsules (DPDS-NCS) have greater bioavailability than free DPDS in mice. Accordingly, the aim of this study was to investigate the antioxidant properties of DPDS-NCS in vitro and biological activity in mice. Our in vitro results suggested that DPDS-NCS significantly reduced the production of reactive oxygen species and Fe(II)-induced lipid peroxidation (LPO) in brain. The administration of DPDS-NCS did not result in death or change the levels of endogenous reduced or oxidized glutathione after 72 hours of exposure. Moreover, ex vivo assays demonstrated that DPDS-NCS significantly decreased the LPO and reactive oxygen species levels in the brain. In addition, the highest dose of DPDS-NCS significantly reduced Fe(II)- and sodium nitroprusside-induced LPO in the brain and Fe(II)-induced LPO in the liver. Also, δ-aminolevulinate acid dehydratase within the brain was inhibited only in the highest dose of DPDS-NCS. In conclusion, our data demonstrated that DPDS-NCS exhibited low toxicity in mice and have significant antioxidant characteristics, indicating that nanoencapsulation is a safer method of DPDS administration.


Assuntos
Derivados de Benzeno/farmacologia , Sequestradores de Radicais Livres/farmacologia , Nanocápsulas/química , Compostos Organosselênicos/farmacologia , Animais , Derivados de Benzeno/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fenômenos Químicos , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/química , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Nitroprussiato/química , Nitroprussiato/farmacologia , Compostos Organosselênicos/química , Sintase do Porfobilinogênio/antagonistas & inibidores , Sintase do Porfobilinogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Selênio/química , Compostos de Selênio/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
14.
Sports Med Open ; 1(1): 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284160

RESUMO

BACKGROUND: Evidences have been highlighted the relationship among metabolic syndrome, chronic low-grade inflammation, oxidative stress and several diseases. In this sense, the aim of this study was to investigate the effects of aerobic exercise training on oxidative stress and inflammatory parameters on women with metabolic syndrome (MS). METHODS: Twenty-three untrained women (51.86 ± 6.58 years old, BMI 30.8 ± 4.3 kg/m2) completed a 12-week treadmill exercise training, without modifications on dietary pattern. Advanced oxidation protein products (AOPP), thiobarbituric acid-reactive substances (TBARS), total thiol content (T-SH) and nitrite and nitrate (NOx) levels were assessed in plasma while the levels of interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ) were evaluated in the serum. The RNA expression (mRNA) of IL-1ß, IL-10, TNF-α, IFN-γ, insulin receptor substrate 2 (IRS-2) and matrix metalloproteinase-9 (MMP-9) were performed inperipheral blood mononuclear cells (PBMC) of a subset with eight women with MS using real real-time polymerase chain reaction (qPCR). RESULTS: The intervention resulted in decreased serum levels of IL-1ß, IL-6, TNF-α, IFN-γ, AOPP and TBARS, besides increased levels of IL-10 and T-SH (P < 0.001). NOx concentrations were unchanged, similarly to mRNA expressions quantified in PBMC. CONCLUSIONS: Twelve weeks of AT improved systemic oxidative stress and inflammatory biomarkers in women with MS, although PBMC mRNA expression for inflammatory pathways appeared to be unchanged. This may indicate that AT induced beneficial effects not only in physical fitness but also on health promotion through decreased oxidative damage and proinflammatory status.

15.
Neurochem Res ; 40(6): 1197-210, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25903808

RESUMO

Oxidative stress has been implicated in several pathologies including neurological disorders. Centella asiatica is a popular medicinal plant which has long been used to treat neurological disturbances in Ayurvedic medicine. In the present study, we quantified of compounds by high performance liquid chromatography (HPLC) and examined the phenolic content of infusion, ethyl acetate, n-butanolic and dichloromethane fractions. Furthermore, we analyzed the ability of the extracts from C. asiatica to scavenge the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) radical as well as total antioxidant activity through the reduction of molybdenum (VI) (Mo(6+)) to molybdenum (V) (Mo(5+)). Finally, we examined the antioxidant effect of extracts against oxidant agents, quinolinic acid (QA) and sodium nitroprusside (SNP), on homogenates of different brain regions (cerebral cortex, striatum and hippocampus). The HPLC analysis revealed that flavonoids, triterpene glycoside, tannins, phenolic acids were present in the extracts of C. asiatica and also the phenolic content assay demonstrated that ethyl acetate fraction is rich in these compounds. Besides, the ethyl acetate fraction presented the highest antioxidant effect by decreasing the lipid peroxidation in brain regions induced by QA. On the other hand, when the pro-oxidant agent was SNP, the potency of infusion, ethyl acetate and dichloromethane fractions was equivalent. Ethyl acetate fraction from C. asiatica also protected against thiol oxidation induced by SNP and QA. Thus, the therapeutic potential of C. asiatica in neurological diseases could be associated to its antioxidant activity.


Assuntos
Antioxidantes/farmacologia , Química Encefálica/efeitos dos fármacos , Centella/química , Peroxidação de Lipídeos/efeitos dos fármacos , Nitroprussiato/farmacologia , Oxidantes/farmacologia , Ácido Quinolínico/farmacologia , Triterpenos/farmacologia , Acetatos , Animais , Sequestradores de Radicais Livres/farmacologia , Masculino , Molibdênio/química , Oxirredução , Extratos Vegetais , Ratos , Ratos Wistar , Solventes
16.
Life Sci ; 121: 152-7, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25497076

RESUMO

AIMS: The aim of this study was to investigate the effects of an active lifestyle on mitochondrial functioning, viability, bioenergetics, and redox status markers in peripheral blood mononuclear cells (PBMC) of overweight/ obese postmenopausal women. MATERIALS AND METHODS: We performed a cross-sectional study with postmenopausal women aged 45­64 years and body mass index N 25 kg/m2, divided into physically active (n = 23) and sedentary (n = 12) groups. Mitochondria functioning and viability, bioenergetics and redox status parameters were assessed in PBMC with spectrophotometric and fluorometric assays. KEY FINDINGS: No differences were found in the enzyme activity of complexes I and II of the electron transport chain (ETC), mitochondrial superoxide dismutase (MnSOD) activity, methyl-tetrazolium reduction levels and reduced glutathione and oxidized glutathione levels between the groups. However, the physically active group presented higher levels of reactive oxygen species (ROS) (P= 0.04) and increased catalase (CAT) (P= 0.029), total (P= 0.011) and cytosolic SOD (CuZnSOD) (P= 0.009) activities. SIGNIFICANCE: An active lifestyle that includes aerobic exercise for at least 30 min, three times per week may improve antioxidant enzyme activities in PBMC in overweight/obese postmenopausal women, without changes in the activity of the ETC enzymes. However, this low intensity physical activity is not able to induce relevant mitochondrial adaptations.


Assuntos
Antioxidantes/metabolismo , Estudos Transversais , Estilo de Vida , Monócitos/enzimologia , Atividade Motora/fisiologia , Obesidade/enzimologia , Sobrepeso/enzimologia , Pós-Menopausa/metabolismo , Catalase/metabolismo , Metabolismo Energético/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
17.
Toxicol Rep ; 2: 961-967, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26726309

RESUMO

Organic selenium compounds possess numerous biological properties, including antioxidant activity. Yet, the high toxicity of some of them, such as diphenyl diselenide (DPDS), is a limiting factor in their current usage. Accordingly, we tested four novel organic selenium compounds in the non-parasite nematode Caenorhabditis elegans and compared their efficacy to DPDS. The novel organic selenium compounds are ß-selenoamines (1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS (1,2-bis (2-methoxyphenyl) diselenide (C3) and 1,2-bisp-tolyldiselenide (C4). Synchronized worms at the L4 larval stage were exposed for one hour in M9 buffer to these compounds. Oxidative stress conditions were induced by juglone (200 µM) and heat shock (35 °C). Moreover, we evaluated Caenorhabditis elegans behavior, GST-4::GFP (glutathione S-transferase) expression and the activity of acetylcholinesterase (AChE). All tested compounds efficiently restored viability in juglone stressed worms. However, DPDS, C2, C3 and C4 significantly decreased the defecation cycle time. Juglone-induced GST-4::GFP expression was not attenuated in worms pretreated with the novel compounds, except with C2. Finally, AChE activity was reduced by DPDS, C2, C3 and C4. To our knowledge, this is study firstly showed the effects of C1, C2, C3 and C4 selenium-derived compounds in Caenorhabditis elegans. Low toxic effects were noted, except for reduction in the defecation cycle, which is likely associated with AChE inhibition. The juglone-induced stress (reduced viability) was fully reversed by compounds to control animal levels. C2 was also efficient in reducing the juglone-induced GST-4::GFP expression, suggesting the latter may mediate the stress induced by this compound. Future studies could be profitably directed at addressing additional molecular mechanisms that mediate the protective effects of these novel organic selenium compounds.

18.
Nutrients ; 6(4): 1678-90, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24763113

RESUMO

Caffeine is presented in many commercial products and has been proven to induce ergogenic effects in exercise, mainly related to redox status homeostasis, inflammation and oxidative stress-related adaptation mechanisms. However, most studies have mainly focused on muscle adaptations, and the role of caffeine in different tissues during exercise training has not been fully described. The aim of this study was therefore, to analyze the effects of chronic caffeine intake and exercise training on liver mitochondria functioning and plasma inflammation markers. Rats were divided into control, control/caffeine, exercise, and exercise/caffeine groups. Exercise groups underwent four weeks of swimming training and caffeine groups were supplemented with 6 mg/kg/day. Liver mitochondrial swelling and complex I activity, and plasma myeloperoxidase (MPO) and acetylcholinesterase (AChE) activities were measured. An anti-inflammatory effect of exercise was evidenced by reduced plasma MPO activity. Additionally, caffeine intake alone and combined with exercise decreased the plasma AChE and MPO activities. The per se anti-inflammatory effect of caffeine intake should be highlighted considering its widespread use as an ergogenic aid. Therefore, caffeine seems to interfere on exercise-induced adaptations and could also be used in different exercise-related health treatments.


Assuntos
Biomarcadores/sangue , Cafeína/farmacologia , Inflamação/sangue , Mitocôndrias Hepáticas/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Acetilcolinesterase/sangue , Animais , Inflamação/tratamento farmacológico , Masculino , Potenciais da Membrana , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/sangue , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio
19.
Life Sci ; 96(1-2): 40-5, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24334002

RESUMO

AIMS: Caffeine has been widely used in sports competitions due to its ergogenic effects. Most of the studies regarding caffeine and exercise have focused on muscle and plasma adaptations, while the impact on the liver is scarcely described. The aim is to analyze the effects of caffeine and exercise training on oxidative stress markers and injury-related parameters in the liver. MAIN METHODS: Rats were divided into sedentary/saline, sedentary/caffeine, exercise/saline, and exercise/caffeine groups. Exercise groups underwent 4 weeks of swimming training, and caffeine (6 mg/kg, p.o.) was supplemented throughout the training protocol. Injury-related liver parameters were assessed in plasma, while redox status and oxidative stress markers were measured on liver homogenates. KEY FINDINGS: Exercise training increased muscle citrate synthase activity in the muscle, while in caffeine decreased its activity in both sedentary and trained rats. Aspartate transaminase levels were increased after training, and caffeine intake suppressed this elevation (p<0.05). Caffeine also diminished alanine transaminase levels in both sedentary and exercised rats (p<0.05). Exercise training induced a significant increase on the activity of the enzymes superoxide dismutase and glutathione peroxidase, as an increase on thiobarbituric acid-reactive substances levels was also reached (p<0.05); caffeine intake blunted these alterations. Caffeine intake also suppressed liver catalase activity in both sedentary and exercise groups (p<0.05). SIGNIFICANCE: Our data suggest that caffeine modified the hepatic responses associated to exercise-induced oxidative stress without affecting the performance, exerting different actions according to the tissue. However, further studies are needed to better understand caffeine's role on liver under exercise training.


Assuntos
Cafeína/administração & dosagem , Fígado/metabolismo , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Biomarcadores/metabolismo , Fígado/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Distribuição Aleatória , Ratos , Ratos Wistar
20.
Molecules ; 18(7): 8342-57, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23863774

RESUMO

Vitex megapotamica (Sprengel) Moldenke belongs to the Verbenaceae family and is popularly known as "tarumã". The antioxidant capacity of fractions and crude extract from the leaves of V. megapotamica were determined in this study through the capacity to remove reactive species and phenolic compounds were quantified in the various fractions. The IC50 (DPPH) ranged from 14.17 ± 0.76 to 37.63 ± 0.98 µg/mL. The ethyl acetate fraction might contain the strongest lipid peroxidation inhibitory compounds with an IC50 of 16.36 ± 5.09 µg/mL, being also the one with the highest content of polyphenols (522.4 ± 1.12 mg/g), flavonoids (220.48 ± 0.30 mg/g) and condensed tannins (3.86 ± 0.53 mg/g). Compounds quantified by HPLC/DAD in the crude extract and fractions were chlorogenic and rosmarinic acids. Higher dosages of the extracts were more effective in reducing levels of plasma protein carbonyls and were also shown to be able to remove reactive species by a 2',7'-dichlorofluorescein diacetate assay, reducing oxidative stress in all tested fractions. Results obtained indicated that V. megapotamica exhibits good potential to prevent diseases caused by the overproduction of free radicals and it might also be used as a potential source of natural antioxidant agents.


Assuntos
Antioxidantes/análise , Flavonoides/análise , Polifenóis/análise , Taninos/análise , Vitex/química , Antioxidantes/química , Antioxidantes/farmacologia , Ácido Clorogênico/análise , Cromatografia Líquida de Alta Pressão , Cinamatos/análise , Depsídeos/análise , Flavonoides/química , Flavonoides/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Folhas de Planta/química , Polifenóis/química , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Taninos/química , Taninos/farmacologia , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA