Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSphere ; 5(3)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461271

RESUMO

A small number (10 to 20) of yeast species cause major spoilage in foods. Spoilage yeasts of soft drinks are resistant to preservatives like sorbic acid, and they are highly fermentative, generating large amounts of carbon dioxide gas. Conversely, many yeast species derive energy from respiration only, and most of these are sorbic acid sensitive and so prevented from causing spoilage. This led us to hypothesize that sorbic acid may specifically inhibit respiration. Tests with respirofermentative yeasts showed that sorbic acid was more inhibitory to both Saccharomyces cerevisiae and Zygosaccharomyces bailii during respiration (of glycerol) than during fermentation (of glucose). The respiration-only species Rhodotorula glutinis was equally sensitive when growing on either carbon source, suggesting that ability to ferment glucose specifically enables sorbic acid-resistant growth. Sorbic acid inhibited the respiration process more strongly than fermentation. We present a data set supporting a correlation between the level of fermentation and sorbic acid resistance across 191 yeast species. Other weak acids, C2 to C8, inhibited respiration in accordance with their partition coefficients, suggesting that effects on mitochondrial respiration were related to membrane localization rather than cytosolic acidification. Supporting this, we present evidence that sorbic acid causes production of reactive oxygen species, the formation of petite (mitochondrion-defective) cells, and Fe-S cluster defects. This work rationalizes why yeasts that can grow in sorbic acid-preserved foods tend to be fermentative in nature. This may inform more-targeted approaches for tackling these spoilage organisms, particularly as the industry migrates to lower-sugar drinks, which could favor respiration over fermentation in many spoilage yeasts.IMPORTANCE Spoilage by yeasts and molds is a major contributor to food and drink waste, which undermines food security. Weak acid preservatives like sorbic acid help to stop spoilage, but some yeasts, commonly associated with spoilage, are resistant to sorbic acid. Different yeasts generate energy for growth by the processes of respiration and/or fermentation. Here, we show that sorbic acid targets the process of respiration, so fermenting yeasts are more resistant. Fermentative yeasts are also those usually found in spoilage incidents. This insight helps to explain the spoilage of sorbic acid-preserved foods by yeasts and can inform new strategies for effective control. This is timely as the sugar content of products like soft drinks is being lowered, which may favor respiration over fermentation in key spoilage yeasts.


Assuntos
Fermentação/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Ácido Sórbico/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/metabolismo , Microbiologia de Alimentos , Conservação de Alimentos , Leveduras/classificação
2.
mSphere ; 5(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915214

RESUMO

Propionic, sorbic, and benzoic acids are organic weak acids that are widely used as food preservatives, where they play a critical role in preventing microbial growth. In this study, we uncovered new mechanisms of weak-acid resistance in molds. By screening a library of 401 transcription factor deletion strains in Aspergillus fumigatus for sorbic acid hypersensitivity, a previously uncharacterized transcription factor was identified and named weak acid resistance A (WarA). The orthologous gene in the spoilage mold Aspergillus niger was identified and deleted. WarA was required for resistance to a range of weak acids, including sorbic, propionic, and benzoic acids. A transcriptomic analysis was performed to characterize genes regulated by WarA during sorbic acid treatment in A. niger Several genes were significantly upregulated in the wild type compared with a ΔwarA mutant, including genes encoding putative weak-acid detoxification enzymes and transporter proteins. Among these was An14g03570, a putative ABC-type transporter which we found to be required for weak-acid resistance in A. niger We also show that An14g03570 is a functional homologue of the Saccharomyces cerevisiae protein Pdr12p and we therefore name it PdrA. Last, resistance to sorbic acid was found to be highly heterogeneous within genetically uniform populations of ungerminated A. niger conidia, and we demonstrate that pdrA is a determinant of this heteroresistance. This study has identified novel mechanisms of weak-acid resistance in A. niger which could help inform and improve future food spoilage prevention strategies.IMPORTANCE Weak acids are widely used as food preservatives, as they are very effective at preventing the growth of most species of bacteria and fungi. However, some species of molds can survive and grow in the concentrations of weak acid employed in food and drink products, thereby causing spoilage with resultant risks for food security and health. Current knowledge of weak-acid resistance mechanisms in these fungi is limited, especially in comparison to that in yeasts. We characterized gene functions in the spoilage mold species Aspergillus niger which are important for survival and growth in the presence of weak-acid preservatives. Such identification of weak-acid resistance mechanisms in spoilage molds will help in the design of new strategies to reduce food spoilage in the future.


Assuntos
Ácidos/metabolismo , Aspergillus niger/genética , Proteínas Fúngicas/genética , Esporos Fúngicos/genética , Fatores de Transcrição/genética , Ácidos/farmacologia , Aspergillus niger/efeitos dos fármacos , Farmacorresistência Fúngica , Regulação Fúngica da Expressão Gênica , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/genética , Esporos Fúngicos/metabolismo
3.
Front Microbiol ; 9: 3238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687253

RESUMO

Osmotolerance or halotolerance are used to describe resistance to sugars and salt, or only salt, respectively. Here, a comprehensive screen of more than 600 different yeast isolates revealed that osmosensitive species were equally affected by NaCl and glucose. However, the relative toxicity of salt became increasingly prominent in more osmoresistant species. We confirmed that growth inhibition by glucose in a laboratory strain of Saccharomyces cerevisiae occurred at a lower water activity (Aw) than by salt (NaCl), and pre-growth in high levels of glucose or salt gave enhanced cross-resistance to either. Salt toxicity was largely due to osmotic stress but with an additive enhancement due to effects of the relevant cation. Almost all of the yeast isolates from the screen were also noted to exhibit hetero-resistance to both salt and sugar, whereby high concentrations restricted growth to a small minority of cells within the clonal populations. Rare resistant colonies required growth for up to 28 days to become visible. This cell individuality was more marked with salt than sugar, a possible further reflection of the ion toxicity effect. In both cases, heteroresistance in S. cerevisiae was strikingly dependent on the GPD1 gene product, important for glycerol synthesis. In contrast, a tps1Δ deletant impaired for trehalose showed altered MIC but no change in heteroresistance. Effects on heteroresistance were evident in chronic (but not acute) salt or glucose stress, particularly relevant to growth on low Aw foods. The study reports diverse osmotolerance and halotolerance phenotypes and heteroresistance across an extensive panel of yeast isolates, and indicates that Gpd1-dependent glycerol synthesis is a key determinant enabling growth of rare yeast subpopulations at low Aw, brought about by glucose and in particular salt.

4.
Fungal Genet Biol ; 94: 23-31, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27378203

RESUMO

The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration.


Assuntos
Aspergillus niger/metabolismo , Esporos Fúngicos/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Oxigênio/metabolismo , RNA Fúngico/metabolismo , Ácido Sórbico/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento
5.
Appl Environ Microbiol ; 80(19): 6046-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063657

RESUMO

Conidial germination is fundamentally important to the growth and dissemination of most fungi. It has been previously shown (K. Hayer, M. Stratford, and D. B. Archer, Appl. Environ. Microbiol. 79:6924-6931, 2013, http://dx.doi.org/10.1128/AEM.02061-13), using sugar analogs, that germination is a 2-stage process involving triggering of germination and then nutrient uptake for hyphal outgrowth. In the present study, we tested this 2-stage germination process using a series of nitrogen-containing compounds for the ability to trigger the breaking of dormancy of Aspergillus niger conidia and then to support the formation of hyphae by acting as nitrogen sources. Triggering and germination were also compared between A. niger and Aspergillus nidulans using 2-deoxy-D-glucose (trigger), D-galactose (nontrigger in A. niger but trigger in A. nidulans), and an N source (required in A. niger but not in A. nidulans). Although most of the nitrogen compounds studied served as nitrogen sources for growth, only some nitrogen compounds could trigger germination of A. niger conidia, and all were related to L-amino acids. Using L-amino acid analogs without either the amine or the carboxylic acid group revealed that both the amine and carboxylic acid groups were essential for an L-amino acid to serve as a trigger molecule. Generally, conidia were able to sense and recognize nitrogen compounds that fitted into a specific size range. There was no evidence of uptake of either triggering or nontriggering compounds over the first 90 min of A. niger conidial germination, suggesting that the germination trigger sensors are not located within the spore.


Assuntos
Aminoácidos/farmacologia , Aspergillus nidulans/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Compostos de Nitrogênio/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus niger/crescimento & desenvolvimento , Radioisótopos de Carbono/análise , Cisteína/farmacologia , Desoxiglucose/farmacologia , Galactose/farmacologia , Hifas , Serina/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Valina/farmacologia
6.
Int J Food Microbiol ; 181: 40-7, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24813627

RESUMO

The food spoilage yeast Zygosaccharomyces bailii shows great resistance to weak-acid preservatives, including sorbic acid (2, 4-hexadienoic acid). That extreme resistance was shown to be due to population heterogeneity, with a small sub-population of cells resistant to a variety of weak acids, probably caused by a lower internal pH reducing the uptake of all weak acids. In the present paper, it was found that resistant cells were extremely rare in exponential cultures, but increased by up to 8000-fold in stationary phase. Inoculation of media containing sorbic acid with a population of Z. bailii cells gave rise to what appeared to be a prolonged lag phase, suggesting adaptation to the conditions before the cells entered the period of exponential growth. However, the apparent lag phase caused by sorbic acid was largely due to the time required for the resistant sub-population to grow to detectable levels. The slow growth rate of the sub-population was identical to that of the final total population. The non-resistant bulk population remained viable for 3 days but had lost viability by 6 days and, during that time, there was no indication of any development of resistance in the bulk population. The sub-population growing in sorbic acid showed very high population diversity in colony size and internal pH. After removal of sorbic acid, the population rapidly reverted back to the normal, largely non-resistant, population distribution. The data presented suggest that a reevaluation of the lag phase in microbial batch culture is required, at least for the resistance of Z. bailii to sorbic acid. Furthermore, the significance of phenotypic diversity and heterogeneity in microbial populations is discussed more broadly with potential relevance to bacterial "persisters", natural selection and evolution.


Assuntos
Microbiologia de Alimentos , Ácido Sórbico/farmacologia , Zygosaccharomyces/efeitos dos fármacos , Zygosaccharomyces/crescimento & desenvolvimento , Adaptação Fisiológica/efeitos dos fármacos , Biodiversidade , Conservantes de Alimentos/farmacologia
7.
Appl Environ Microbiol ; 79(22): 6924-31, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995938

RESUMO

The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Carboidratos/química , Esporos Fúngicos/crescimento & desenvolvimento , Aspergillus niger/fisiologia , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Galactose/química , Glucose/química , Hexoses/química , Hifas/crescimento & desenvolvimento , Manose/química , Pentoses/química , Trealose/química , Xilose/química
8.
Int J Food Microbiol ; 166(1): 126-34, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23856006

RESUMO

Weak-acid preservatives, such as sorbic acid and acetic acid, are used in many low pH foods to prevent spoilage by fungi. The spoilage yeast Zygosaccharomyces bailii is notorious for its extreme resistance to preservatives and ability to grow in excess of legally-permitted concentrations of preservatives. Extreme resistance was confirmed in 38 strains of Z. bailii to several weak-acid preservatives. Using the brewing yeast Saccharomyces cerevisiae as a control, tests showed that Z. bailii was ~3-fold more resistant to a variety of weak-acids but was not more resistant to alcohols, aldehydes, esters, ethers, ketones, or hydrophilic chelating acids. The weak acids were chemically very diverse in structure, making it improbable that the universal resistance was caused by degradation or metabolism. Examination of Z. bailii cell populations showed that extreme resistance to sorbic acid, benzoic acid and acetic acid was limited to a few cells within the population, numbers decreasing with concentration of weak acid to <1 in 1000. Re-inoculation of resistant sub-populations into weak-acid-containing media showed that all cells now possessed extreme resistance. Resistant sub-populations grown in any weak-acid preservative also showed ~100% cross-resistance to other weak-acid preservatives. Tests using (14)C-acetic acid showed that weak-acid accumulation was much lower in the resistant sub-populations. Acid accumulation is caused by acid dissociation in the higher pH of the cytoplasm. Tests on intracellular pH (pHi) in the resistant sub-population showed that the pH was much lower, ~ pH5.6, than in the sensitive bulk population. The hypothesis is proposed that extreme resistance to weak-acid preservatives in Z. bailii is due to population heterogeneity, with a small proportion of cells having a lower intracellular pH. This reduces the level of accumulation of any weak acid in the cytoplasm, thus conferring resistance to all weak acids, but not to other inhibitors.


Assuntos
Farmacorresistência Fúngica , Conservantes de Alimentos/farmacologia , Zygosaccharomyces/efeitos dos fármacos , Ácidos/farmacologia , Radioisótopos de Carbono/análise , Radioisótopos de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Espaço Intracelular/química , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Zygosaccharomyces/crescimento & desenvolvimento
9.
BMC Genomics ; 14: 246, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23577966

RESUMO

BACKGROUND: Genome-wide analysis was performed to assess the transcriptional landscape of germinating A. niger conidia using both next generation RNA-sequencing and GeneChips. The metabolism of storage compounds during conidial germination was also examined and compared to the transcript levels from associated genes. RESULTS: The transcriptome of dormant conidia was shown to be highly differentiated from that of germinating conidia and major changes in response to environmental shift occurred within the first hour of germination. The breaking of dormancy was associated with increased transcript levels of genes involved in the biosynthesis of proteins, RNA turnover and respiratory metabolism. Increased transcript levels of genes involved in metabolism of nitrate at the onset of germination implies its use as a source of nitrogen. The transcriptome of dormant conidia contained a significant component of antisense transcripts that changed during germination. CONCLUSION: Dormant conidia contained transcripts of genes involved in fermentation, gluconeogenesis and the glyoxylate cycle. The presence of such transcripts in dormant conidia may indicate the generation of energy from non-carbohydrate substrates during starvation-induced conidiation or for maintenance purposes during dormancy. The immediate onset of metabolism of internal storage compounds after the onset of germination, and the presence of transcripts of relevant genes, suggest that conidia are primed for the onset of germination. For some genes, antisense transcription is regulated in the transition from resting conidia to fully active germinants.


Assuntos
Aspergillus niger/genética , RNA Fúngico/genética , Esporos Fúngicos/genética , Transcriptoma , Aspergillus niger/fisiologia , Metabolismo dos Carboidratos/genética , Regulação para Baixo , Proteínas Fúngicas/biossíntese , Gluconeogênese/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Antissenso/genética , Análise de Sequência de RNA , Esporos Fúngicos/fisiologia , Regulação para Cima
10.
Int J Food Microbiol ; 161(3): 164-71, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23334094

RESUMO

Weak-acid preservatives commonly used to prevent fungal spoilage of low pH foods include sorbic and acetic acids. The "classical weak-acid theory" proposes that weak acids inhibit spoilage organisms by diffusion of undissociated acids through the membrane, dissociation within the cell to protons and anions, and consequent acidification of the cytoplasm. Results from 25 strains of Saccharomyces cerevisiae confirmed inhibition by acetic acid at a molar concentration 42 times higher than sorbic acid, in contradiction of the weak-acid theory where all acids of equal pK(a) should inhibit at equimolar concentrations. Flow cytometry showed that the intracellular pH fell to pH 4.7 at the growth-inhibitory concentration of acetic acid, whereas at the inhibitory concentration of sorbic acid, the pH only fell to pH 6.3. The plasma membrane H⁺-ATPase proton pump (Pma1p) was strongly inhibited by sorbic acid at the growth-inhibitory concentration, but was stimulated by acetic acid. The H⁺-ATPase was also inhibited by lower sorbic acid concentrations, but later showed recovery and elevated activity if the sorbic acid was removed. Levels of PMA1 transcripts increased briefly following sorbic acid addition, but soon returned to normal levels. It was concluded that acetic acid inhibition of S. cerevisiae was due to intracellular acidification, in accord with the "classical weak-acid theory". Sorbic acid, however, appeared to be a membrane-active antimicrobial compound, with the plasma membrane H⁺-ATPase proton pump being a primary target of inhibition. Understanding the mechanism of action of sorbic acid will hopefully lead to improved methods of food preservation.


Assuntos
Conservantes de Alimentos/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/farmacologia , Ácido Acético/farmacologia , Conservação de Alimentos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , ATPases Translocadoras de Prótons/genética , Prótons , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Int J Food Microbiol ; 157(3): 375-83, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22726726

RESUMO

Moulds are able to cause spoilage in preserved foods through degradation of the preservatives using the Pad-decarboxylation system. This causes, for example, decarboxylation of the preservative sorbic acid to 1,3-pentadiene, a volatile compound with a kerosene-like odour. Neither the natural role of this system nor the range of potential substrates has yet been reported. The Pad-decarboxylation system, encoded by a gene cluster in germinating spores of the mould Aspergillus niger, involves activity by two decarboxylases, PadA1 and OhbA1, and a regulator, SdrA, acting pleiotropically on sorbic acid and cinnamic acid. The structural features of compounds important for the induction of Pad-decarboxylation at both transcriptional and functionality levels were investigated by rtPCR and GCMS. Sorbic and cinnamic acids served as transcriptional inducers but ferulic, coumaric and hexanoic acids did not. 2,3,4,5,6-Pentafluorocinnamic acid was a substrate for the enzyme but had no inducer function; it was used to distinguish induction and competence for decarboxylation in combination with the analogue chemicals. The structural requirements for the substrates of the Pad-decarboxylation system were probed using a variety of sorbic and cinnamic acid analogues. High decarboxylation activity, ~100% conversion of 1mM substrates, required a mono-carboxylic acid with an alkenyl double bond in the trans (E)-configuration at position C2, further unsaturation at C4, and an overall molecular length between 6.5Å and 9Å. Polar groups on the phenyl ring of cinnamic acid abolished activity (no conversion). Furthermore, several compounds were shown to block Pad-decarboxylation. These compounds, primarily aldehyde analogues of active substrates, may serve to reduce food spoilage by moulds such as A. niger. The possible ecological role of Pad-decarboxylation of spore self-inhibitors is unlikely and the most probable role for Pad-decarboxylation is to remove cinnamic acid-type inhibitors from plant material and allow uninhibited germination and growth of mould spores.


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Carboxiliases/genética , Conservantes de Alimentos/metabolismo , Ácidos/metabolismo , Alcadienos/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Carboxiliases/metabolismo , Cinamatos/química , Descarboxilação , Fungos/metabolismo , Pentanos/metabolismo , Ácido Sórbico/metabolismo , Ácido Sórbico/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Transcrição Gênica
12.
FEMS Yeast Res ; 11(4): 356-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21332639

RESUMO

Species-specific primer pairs that produce a single band of known product size have been developed for members of the Zygosaccharomyces clade including Zygosaccharomyces bailii, Zygosaccharomyces bisporus, Zygosaccharomyces kombuchaensis, Zygosaccharomyces lentus, Zygosaccharomyces machadoi, Zygosaccharomyces mellis and Zygosaccharomyces rouxii. An existing primer pair for the provisional new species Zygosaccharomyces pseudorouxii has been confirmed as specific. The HIS3 gene, encoding imidazole-glycerolphosphate dehydratase, was used as the target gene. This housekeeping gene evolves slowly and is thus well conserved among different isolates, but shows a significant number of base pair changes between even closely related species, sufficient for species-specific primer design. The primers were tested on type and wild strains of the genus Zygosaccharomyces and on members of the Saccharomycetaceae. Sequencing of the D1/D2 region of rDNA was used to confirm the identification of all nonculture collection isolates. This approach used extracted genomic DNA, but in practice, it can be used efficiently with a rapid colony PCR protocol. The method also successfully detected known and new hybrid strains of Z. rouxii and Z. pseudorouxii. The method is rapid, robust and inexpensive. It requires little expertise by the user and is thus useful for preliminary, large-scale screens.


Assuntos
Primers do DNA/genética , DNA Ribossômico/genética , Reação em Cadeia da Polimerase/métodos , Zygosaccharomyces/genética , DNA Fúngico/análise , DNA Fúngico/genética , DNA Ribossômico/análise , Proteínas Fúngicas/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Zygosaccharomyces/isolamento & purificação
13.
Fungal Genet Biol ; 47(8): 683-92, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20452450

RESUMO

The ability to resist anti-microbial compounds is of key evolutionary benefit to microorganisms. Aspergillus niger has previously been shown to require the activity of a phenylacrylic acid decarboxylase (encoded by padA1) for the decarboxylation of the weak-acid preservative sorbic acid (2,4-hexadienoic acid) to 1,3-pentadiene. It is now shown that this decarboxylation process also requires the activity of a putative 4-hydroxybenzoic acid (3-octaprenyl-4-hydroxybenzoic acid) decarboxylase, encoded by a gene termed ohbA1, and a putative transcription factor, sorbic acid decarboxylase regulator, encoded by sdrA. The padA1,ohbA1 and sdrA genes are in close proximity to each other on chromosome 6 in the A. niger genome and further bioinformatic analysis revealed conserved synteny at this locus in several Aspergillus species and other ascomycete fungi indicating clustering of metabolic function. This cluster is absent from the genomes of A. fumigatus and A. clavatus and, as a consequence, neither species is capable of decarboxylating sorbic acid.


Assuntos
Antifúngicos/metabolismo , Aspergillus niger/metabolismo , Genes Fúngicos , Redes e Vias Metabólicas/genética , Ácido Sórbico/metabolismo , Alcadienos/metabolismo , Sequência de Aminoácidos , Carboxiliases/genética , Descarboxilação , Proteínas Fúngicas/genética , Ordem dos Genes , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Família Multigênica , Parabenos/metabolismo , Pentanos/metabolismo , Alinhamento de Sequência , Sintenia , Fatores de Transcrição/genética
14.
Int J Food Microbiol ; 136(1): 37-43, 2009 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-19846233

RESUMO

Fungal spoilage of many foods is prevented by weak-acid preservatives such as sorbic acid or acetic acid. We show that sorbic and acetic acids do not both inhibit cells by lowering of internal pH alone and that the "classical weak-acid theory" must be revised. The "classical weak-acid theory" suggests that all lipophilic acids with identical pK(a) values are equally effective as preservatives, causing inhibition by diffusion of molecular acids into the cell, dissociation, and subsequent acidification of the cytoplasm. Using a number of spoilage fungi from different genera, we have shown that sorbic acid was far more toxic than acetic acid, and no correlation existed between resistance to acetic acid and resistance to sorbic acid. The molar ratio of minimum inhibitory concentrations (MICs) (acetic: sorbic) was 58 for Paecilomyces variotii and 14 for Aspergillus phoenicis. Using flow cytometry on germinating conidia of Aspergillusniger, acetic acid at pH 4.0 caused an immediate decline in the mean cytoplasmic pH (pH(i)) falling from neutrality to approximately pH 4.7 at the MIC (80 mM). Sorbic acid also caused a rapid but far smaller drop in pH(i), at the MIC (4.5 mM); the pH remained above pH 6.3. Over 0-5 mM, a number of other weak acids caused a similar fall in cytoplasmic pH. It was concluded that while acetic acid inhibition of A. niger conidia was due to cytoplasmic acidification, inhibition by sorbic acid was not. A possible membrane-mediated mode of action of sorbic acid is discussed.


Assuntos
Ácido Acético , Fungos Mitospóricos/efeitos dos fármacos , Ácido Sórbico , Esporos Fúngicos , Ácido Acético/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Citometria de Fluxo , Microbiologia de Alimentos , Conservantes de Alimentos/farmacologia , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Ácido Sórbico/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética
15.
Microbiology (Reading) ; 154(Pt 4): 1251-1257, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18375817

RESUMO

Weak-acid preservatives such as sorbic acid are added to foods to prevent fungal spoilage. The modes of action of weak-acid preservatives are only partially understood and, in this paper, further insight is presented into the mechanisms by which weak acids inhibit the growth of fungi. Uridine-requiring strains of Aspergillus niger were shown to be more sensitive to weak acids (including sorbic, acetic and benzoic acids) than wild-type (WT) strains. In contrast, sensitivity to other, non-acidic, antifungal substances was similar in mutant and WT strains. By complementing a pyrG(-) strain of A. niger with an intact pyrG gene, WT-like resistance to weak-acid preservatives was restored. Using (14)C-labelled uridine, sorbic acid was shown to completely inhibit uridine uptake in germinating conidia in a non-competitive manner. It is therefore proposed that the additional weak-acid sensitivity of the pyrG(-) strains was caused by weak-acid inhibition of uridine uptake. Several other auxotrophic strains of A. niger were screened for sensitivity to acetic, sorbic and decanoic acids. Strains auxotrophic for either adenine or uridine were found to have enhanced sensitivity but, in contrast, amino acid auxotrophs showed resistance comparable to that of the WT. Uridine auxotrophs of Saccharomyces cerevisiae were not more sensitive to weak acids compared to WT strains. In conclusion, this study describes a previously unknown mechanism of action of weak acids against the filamentous fungus A. niger, which may fundamentally affect our understanding of the preservation of food against spoilage fungi.


Assuntos
Antifúngicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/metabolismo , Ácidos Carboxílicos/farmacologia , Conservantes de Alimentos/farmacologia , Uridina/metabolismo , Aspergillus niger/genética , Aspergillus niger/crescimento & desenvolvimento , Radioisótopos de Carbono/metabolismo , Genes Fúngicos , Teste de Complementação Genética , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Ácido Sórbico , Esporos Fúngicos/metabolismo
16.
Appl Environ Microbiol ; 74(2): 550-2, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18039817

RESUMO

Resistance to sorbic and cinnamic acids is mediated by a phenylacrylic acid decarboxylase (PadA1) in Aspergillus niger. A. niger DeltapadA1 mutants are unable to decarboxylate sorbic and cinnamic acids, and the MIC of sorbic acid required to inhibit spore germination was reduced by approximately 50% in DeltapadA1 mutants.


Assuntos
Aspergillus niger/metabolismo , Carboxiliases/metabolismo , Conservantes de Alimentos/metabolismo , Ácido Sórbico/metabolismo , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/genética , Benzoatos/metabolismo , Benzoatos/farmacologia , Cinamatos/metabolismo , Cinamatos/farmacologia , Descarboxilação , Farmacorresistência Fúngica/genética , Conservantes de Alimentos/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Ácido Sórbico/farmacologia
17.
Appl Environ Microbiol ; 73(20): 6534-42, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17766451

RESUMO

The spoilage yeast Saccharomyces cerevisiae degraded the food preservative sorbic acid (2,4-hexadienoic acid) to a volatile hydrocarbon, identified by gas chromatography mass spectrometry as 1,3-pentadiene. The gene responsible was identified as PAD1, previously associated with the decarboxylation of the aromatic carboxylic acids cinnamic acid, ferulic acid, and coumaric acid to styrene, 4-vinylguaiacol, and 4-vinylphenol, respectively. The loss of PAD1 resulted in the simultaneous loss of decarboxylation activity against both sorbic and cinnamic acids. Pad1p is therefore an unusual decarboxylase capable of accepting both aromatic and aliphatic carboxylic acids as substrates. All members of the Saccharomyces genus (sensu stricto) were found to decarboxylate both sorbic and cinnamic acids. PAD1 homologues and decarboxylation activity were found also in Candida albicans, Candida dubliniensis, Debaryomyces hansenii, and Pichia anomala. The decarboxylation of sorbic acid was assessed as a possible mechanism of resistance in spoilage yeasts. The decarboxylation of either sorbic or cinnamic acid was not detected for Zygosaccharomyces, Kazachstania (Saccharomyces sensu lato), Zygotorulaspora, or Torulaspora, the genera containing the most notorious spoilage yeasts. Scatter plots showed no correlation between the extent of sorbic acid decarboxylation and resistance to sorbic acid in spoilage yeasts. Inhibitory concentrations of sorbic acid were almost identical for S. cerevisiae wild-type and Deltapad1 strains. We concluded that Pad1p-mediated sorbic acid decarboxylation did not constitute a significant mechanism of resistance to weak-acid preservatives by spoilage yeasts, even if the decarboxylation contributed to spoilage through the generation of unpleasant odors.


Assuntos
Carboxiliases/genética , Conservantes de Alimentos/metabolismo , Ácido Sórbico/metabolismo , Leveduras/metabolismo , Carboxiliases/metabolismo , Cinamatos/metabolismo , Meios de Cultura , Descarboxilação , Farmacorresistência Fúngica , Conservantes de Alimentos/farmacologia , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/farmacologia , Leveduras/classificação , Leveduras/enzimologia , Leveduras/genética
18.
Int J Food Microbiol ; 114(2): 234-42, 2007 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-17239464

RESUMO

Two isolates of spoilage yeasts Zygosaccharomyces bailii and Zygosaccharomyces rouxii were obtained from a high sugar environment, in a factory producing candied fruit and nougat. Other strains, Z. bailii from other environments and other isolates from high sugar/salt environments were obtained for comparison (Zygosaccharomyces lentus, Candida magnoliae, Candida halophila and Pichia guilliermondii). A full physiological assessment of these isolates was carried out, of preservative and biocide resistance, osmotolerance, ethanol-tolerance, low pH resistance, degree of fermentation, and growth temperature and survival to pasteurisation. Results showed that the strains isolated from high sugar environments did not show extreme physiology. These were robust strains but within the normal parameters expected for the species. One exception to this was that the Z. bailii strains were abnormally able to grow at 37 degrees C. In all strains other than C. magnolia and C. halophila, cells were able to adapt to high levels of sugar. Cultures grown in high glucose concentrations were subsequently able to tolerate higher concentrations of glucose than previously. Similarly, high sugar was found to confer a degree of protection against pasteurisation, enabling survival in what would have otherwise been a lethal treatment. Isolates of Z. bailii showed a high level of resistance to preservatives such as sorbic acid, benzoic acid, acetic acid, cinnamic acid, and ethanol, and also to heat. Unexpectedly Z. bailii isolates were not exceptionally resistant to biocides such as peracetic acid, or hypochlorite. These results indicate that spoilage by yeasts such as Z. bailii may be better prevented by use of biocidal cleaning agents in the factory, rather than treating the food with preservatives.


Assuntos
Adaptação Fisiológica , Doces/microbiologia , Contaminação de Alimentos/análise , Conservantes de Alimentos/farmacologia , Zygosaccharomyces , Contagem de Colônia Microbiana , Carboidratos da Dieta/metabolismo , Fermentação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Temperatura , Zygosaccharomyces/efeitos dos fármacos , Zygosaccharomyces/crescimento & desenvolvimento , Zygosaccharomyces/isolamento & purificação , Zygosaccharomyces/fisiologia
19.
FEMS Yeast Res ; 5(8): 747-55, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15851103

RESUMO

26S rDNA D1/D2 sequencing was used to characterise a number of food-associated Zygosaccharomyces rouxii strains held at the National Collection of Yeast Cultures. In the course of this study, four strains (NCYC 1682, NCYC 3042, NCYC 3060 and NCYC 3061) were identified which appeared, based on their D1/D2 sequences, to belong to a novel Zygosaccharomyces species. However, subsequent sequence analysis showed that NCYC 1682, NCYC 3060 and NCYC 3061 possess two highly divergent copies of the nuclear-encoded ADE2, HIS3 and SOD2 genes, indicating these three strains are in fact hybrids. NCYC 3042, however, does appear to represent a novel species which may be hypothesized to have crossed with Z. rouxii and given rise to hybrid strains. Additional approaches to define precise taxonomic status and mechanisms of hybrid genome formation amongst yeast species are discussed.


Assuntos
Genes Fúngicos , Zygosaccharomyces/genética , Carboxiliases/genética , Microbiologia de Alimentos , Proteínas Fúngicas/genética , Variação Genética , Hidroliases/genética , Dados de Sequência Molecular , Filogenia , Trocadores de Sódio-Hidrogênio/genética
20.
J Agric Food Chem ; 53(5): 1769-75, 2005 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-15740072

RESUMO

The aim of the present study was to evaluate which structural elements of the vanillin molecule are responsible for its observed antifungal activity. MICs of vanillin, its six direct structural analogues, and several other related compounds were determined in yeast extract peptone dextrose broth against a total of 18 different food spoilage molds and yeasts. Using total mean MICs after 4 days of incubation at 25 degrees C, the antifungal activity order was 3-anisaldehyde (1.97 mM) > benzaldehyde (3.30 mM) > vanillin (5.71 mM) > anisole (6.59 mM) > 4-hydroxybenzaldehyde (9.09 mM) > phenol (10.59 mM) > guaiacol (11.66 mM). No correlation was observed between the relative antifungal activity of the test compounds and log P(o/w). Furthermore, phenol (10.6 mM) was found to exhibit a greater activity than cyclohexanol (25.3 mM), whereas cyclohexanecarboxaldehyde (2.13 mM) was more active than benzaldehyde (3.30 mM). Finally, the antifungal order of isomers of hydroxybenzaldehyde and anisaldehyde was found to be 2- > 3- > 4- and 3- > 2- > 4-, respectively. In conclusion, the aldehyde moeity of vanillin plays a key role in its antifungal activity, but side-group position on the benzene ring also influences this activity. Understanding how the structure of natural compounds relates to their antimicrobial function is fundamentally important and may help facilitate their application as novel food preservatives.


Assuntos
Benzaldeídos/química , Benzaldeídos/farmacologia , Fungos/efeitos dos fármacos , Relação Estrutura-Atividade , Microbiologia de Alimentos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA