Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stand Genomic Sci ; 10: 95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26566420

RESUMO

Strain 3.5.1 was isolated from soils of the Republic of Tatarstan, Russia, on the basis of presence of a high phytate-degrading activity. Strains with such activities attract special interest because of its potential use as feed additives and natural manures. Strain 3.5.1 harbors a 99 % 16S rRNA nucleotide sequence similarity to different Pantoea species (P. vagans, P. ananatis, P. agglomerans, P. anthophila and Pantoea sp.) and exhibits unique biochemical properties that do not allow strain identification up to species. Moreover, the strain 3.5.1 shows a low ANI and MALDI-TOF Mass Spectrometry scores. Thus, it is likely that the strain 3.5.1 represents a new Pantoea species. Here, we present the genome sequence of Pantoea sp. strain 3.5.1. The 4,964,649 bp draft genome consists of 23 contigs with 4,556 protein-coding and 143 RNA genes. Genome sequencing and annotation revealed two phytase genes and putative regulatory genes controlling its activity.

2.
Genome Announc ; 3(4)2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26272561

RESUMO

This paper announces the genome sequence of Bacillus ginsengihumi strain M2.11, which has been characterized as a strain which produces the enzyme with the ability to degrade phytase. The genome of the strain M2.11 is 3.7 Mb and harbors 3,082 coding sequences.

3.
Appl Environ Microbiol ; 81(19): 6790-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209662

RESUMO

Phosphorus is an important macronutrient, but its availability in soil is limited. Many soil microorganisms improve the bioavailability of phosphate by releasing it from various organic compounds, including phytate. To investigate the diversity of phytate-hydrolyzing bacteria in soil, we sampled soils of various ecological habitats, including forest, private homesteads, large agricultural complexes, and urban landscapes. Bacterial isolate Pantoea sp. strain 3.5.1 with the highest level of phytase activity was isolated from forest soil and investigated further. The Pantoea sp. 3.5.1 agpP gene encoding a novel glucose-1-phosphatase with high phytase activity was identified, and the corresponding protein was purified to apparent homogeneity, sequenced by mass spectroscopy, and biochemically characterized. The AgpP enzyme exhibits maximum activity and stability at pH 4.5 and at 37°C. The enzyme belongs to a group of histidine acid phosphatases and has the lowest Km values toward phytate, glucose-6-phosphate, and glucose-1-phosphate. Unexpectedly, stimulation of enzymatic activity by several divalent metal ions was observed for the AgpP enzyme. High-performance liquid chromatography (HPLC) and high-performance ion chromatography (HPIC) analyses of phytate hydrolysis products identify dl-myo-inositol 1,2,4,5,6-pentakisphosphate as the final product of the reaction, indicating that the Pantoea sp. AgpP glucose-1-phosphatase can be classified as a 3-phytase. The identification of the Pantoea sp. AgpP phytase and its unusual regulation by metal ions highlight the remarkable diversity of phosphorus metabolism regulation in soil bacteria. Furthermore, our data indicate that natural forest soils harbor rich reservoirs of novel phytate-hydrolyzing enzymes with unique biochemical features.


Assuntos
6-Fitase/metabolismo , Proteínas de Bactérias/metabolismo , Pantoea/enzimologia , Pantoea/isolamento & purificação , Monoéster Fosfórico Hidrolases/metabolismo , Microbiologia do Solo , 6-Fitase/química , 6-Fitase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hidrólise , Íons/metabolismo , Cinética , Metais/metabolismo , Dados de Sequência Molecular , Pantoea/classificação , Pantoea/genética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Ácido Fítico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA