Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Ocean Sustain ; 3(1): 30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828386

RESUMO

Aquaculture has the potential to support a sustainable and equitable food system in line with the United Nations Sustainable Development Goals (SDG) on food security, climate change, and biodiversity (FCB). Biological diversity amongst aquaculture organisms can drive diverse contributions to such goals. Existing studies have assessed the performance of a limited number of taxa in the general context of improving aquaculture production, but few explicitly consider the biological attributes of farmed aquatic taxa at the FCB nexus. Through a systematic literature review, we identify key traits associated with FCB and evaluate the potential of aquaculture to contribute to FCB goals using a fuzzy logic model. The majority of identified traits are associated with food security, and two-thirds of traits linked with food security are also associated with climate change or biodiversity, revealing potential co-benefits of optimizing a single trait. Correlations between FCB indices further suggest that challenges and opportunities in aquaculture are intertwined across FCB goals, but low mean FCB scores suggest that the focus of aquaculture research and development on food production is insufficient to address food security, much less climate or biodiversity issues. As expected, production-maximizing traits (absolute fecundity, the von Bertalanffy growth function coefficient K, macronutrient density, maximum size, and trophic level as a proxy for feed efficiency) highly influence a species' FCB potential, but so do species preferences for environmental conditions (tolerance to phosphates, nitrates, and pH levels, as well as latitudinal and geographic ranges). Many highly farmed species that are typically associated with food security, especially finfish, score poorly for food, climate, and biodiversity potential. Algae and mollusc species tend to perform well across FCB indices, revealing the importance of non-fish species in achieving FCB goals and potential synergies in integrated multi-trophic aquaculture systems. Overall, this study provides decision-makers with a biologically informed assessment of desirable aquaculture traits and species while illuminating possible strategies to increase support for FCB goals. Our findings can be used as a foundation for studying the socio-economic opportunities and barriers for aquaculture transitions to develop equitable pathways toward FCB-positive aquaculture across nuanced regional contexts.

3.
Mov Ecol ; 11(1): 17, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959671

RESUMO

BACKGROUND: Animal movement data are regularly used to infer foraging behaviour and relationships to environmental characteristics, often to help identify critical habitat. To characterize foraging, movement models make a set of assumptions rooted in theory, for example, time spent foraging in an area increases with higher prey density. METHODS: We assessed the validity of these assumptions by associating horizontal movement and diving of satellite-telemetered ringed seals (Pusa hispida)-an opportunistic predator-in Hudson Bay, Canada, to modelled prey data and environmental proxies. RESULTS: Modelled prey biomass data performed better than their environmental proxies (e.g., sea surface temperature) for explaining seal movement; however movement was not related to foraging effort. Counter to theory, seals appeared to forage more in areas with relatively lower prey diversity and biomass, potentially due to reduced foraging efficiency in those areas. CONCLUSIONS: Our study highlights the need to validate movement analyses with prey data to effectively estimate the relationship between prey availability and foraging behaviour.

4.
Nature ; 616(7955): 104-112, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813964

RESUMO

Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.


Assuntos
Organismos Aquáticos , Segurança Alimentar , Internacionalidade , Alimentos Marinhos , Desenvolvimento Sustentável , Humanos , Dieta/métodos , Dieta/estatística & dados numéricos , Dieta/tendências , Meio Ambiente , Carne , Estado Nutricional , Internacionalidade/legislação & jurisprudência , Alimentos Marinhos/economia , Alimentos Marinhos/estatística & dados numéricos , Alimentos Marinhos/provisão & distribuição , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/legislação & jurisprudência , Desenvolvimento Sustentável/tendências , Segurança Alimentar/economia , Segurança Alimentar/legislação & jurisprudência , Segurança Alimentar/métodos , Mudança Climática , Política de Saúde , Política Ambiental , Fatores Socioeconômicos , Características Culturais , Ácidos Graxos Ômega-3 , Pegada de Carbono , Doenças Cardiovasculares/epidemiologia
5.
Proc Natl Acad Sci U S A ; 120(5): e2216891120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689654

RESUMO

Overfishing is the most significant threat facing sharks and rays. Given the growth in consumption of seafood, combined with the compounding effects of habitat loss, climate change, and pollution, there is a need to identify recovery paths, particularly in poorly managed and poorly monitored fisheries. Here, we document conservation through fisheries management success for 11 coastal sharks in US waters by comparing population trends through a Bayesian state-space model before and after the implementation of the 1993 Fisheries Management Plan for Sharks. We took advantage of the spatial and temporal gradients in fishing exposure and fisheries management in the Western Atlantic to analyze the effect on the Red List status of all 26 wide-ranging coastal sharks and rays. We show that extinction risk was greater where fishing pressure was higher, but this was offset by the strength of management engagement (indicated by strength of National and Regional Plan of Action for sharks and rays). The regional Red List Index (which tracks changes in extinction risk through time) declined in all regions until the 1980s but then improved in the North and Central Atlantic such that the average extinction risk is currently half that in the Southwest. Many sharks and rays are wide ranging, and successful fisheries management in one country can be undone by poorly regulated or unregulated fishing elsewhere. Our study underscores that well-enforced, science-based management of carefully monitored fisheries can achieve conservation success, even for slow-growing species.


Assuntos
Tubarões , Animais , Conservação dos Recursos Naturais , Teorema de Bayes , Pesqueiros , Ecossistema
6.
NPJ Ocean Sustain ; 2(1): 10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38694134

RESUMO

Although the Paris Agreement establishes targets to limit global warming-including carbon market mechanisms-little research has been done on developing operational tools to achieve them. To cover this gap, we use CO2 permit markets towards a market-based solutions (MBS) scheme to implement blue carbon climate targets for global fisheries. The scheme creates a scarcity value for the right to not sequester blue carbon, generating an asset of carbon sequestration allowances based on historical landings, which are considered initial allowances. We use the scheme to identify fishing activities that could be reduced because they are biologically negative, economically inefficient, and socially unequitable. We compute the annual willingness to sequester carbon considering the CO2e trading price for 2022 and the social cost of carbon dioxide (SC-CO2), for years 2025, 2030 and 2050. The application of the MBS scheme will result in 0.122 Gt CO2e sequestered or US$66 billion of potential benefits per year when considering 2050 SC-CO2. The latter also implies that if CO2e trading prices reach the 2050 social cost of carbon, around 75% of the landings worldwide would be more valuable as carbon than as foodstuff in the market. Our findings provide the global economy and policymakers with an alternative for the fisheries sector, which grapples with the complexity to find alternatives to reallocate invested capital. They also provide a potential solution to make climate resilience, social sustainability and equity of global fisheries real, scientific and practical for a wide range of social-ecological and political contexts.

7.
Nat Commun ; 13(1): 6328, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319621

RESUMO

Seagrass conservation is critical for mitigating climate change due to the large stocks of carbon they sequester in the seafloor. However, effective conservation and its potential to provide nature-based solutions to climate change is hindered by major uncertainties regarding seagrass extent and distribution. Here, we describe the characterization of the world's largest seagrass ecosystem, located in The Bahamas. We integrate existing spatial estimates with an updated empirical remote sensing product and perform extensive ground-truthing of seafloor with 2,542 diver surveys across remote sensing tiles. We also leverage seafloor assessments and movement data obtained from instrument-equipped tiger sharks, which have strong fidelity to seagrass ecosystems, to augment and further validate predictions. We report a consensus area of at least 66,000 km2 and up to 92,000 km2 of seagrass habitat across The Bahamas Banks. Sediment core analysis of stored organic carbon further confirmed the global relevance of the blue carbon stock in this ecosystem. Data from tiger sharks proved important in supporting mapping and ground-truthing remote sensing estimates. This work provides evidence of major knowledge gaps in the ocean ecosystem, the benefits in partnering with marine animals to address these gaps, and underscores support for rapid protection of oceanic carbon sinks.


Assuntos
Ecossistema , Tubarões , Animais , Sequestro de Carbono , Mudança Climática , Carbono
9.
Glob Chang Biol ; 28(21): 6254-6267, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36047439

RESUMO

Rebuilding overexploited marine populations is an important step to achieve the United Nations' Sustainable Development Goal 14-Life Below Water. Mitigating major human pressures is required to achieve rebuilding goals. Climate change is one such key pressure, impacting fish and invertebrate populations by changing their biomass and biogeography. Here, combining projection from a dynamic bioclimate envelope model with published estimates of status of exploited populations from a catch-based analysis, we analyze the effects of different global warming and fishing levels on biomass rebuilding for the exploited species in 226 marine ecoregions of the world. Fifty three percent (121) of the marine ecoregions have significant (at 5% level) relationship between biomass and global warming level. Without climate change and under a target fishing mortality rate relative to the level required for maximum sustainable yield of 0.75, we project biomass rebuilding of 1.7-2.7 times (interquartile range) of current (average 2014-2018) levels across marine ecoregions. When global warming level is at 1.5 and 2.6°C, respectively, such biomass rebuilding drops to 1.4-2.0 and 1.1-1.5 times of current levels, with 10% and 25% of the ecoregions showing no biomass rebuilding, respectively. Marine ecoregions where biomass rebuilding is largely impacted by climate change are in West Africa, the Indo-Pacific, the central and south Pacific, and the Eastern Tropical Pacific. Coastal communities in these ecoregions are highly dependent on fisheries for livelihoods and nutrition security. Lowering the targeted fishing level and keeping global warming below 1.5°C are projected to enable more climate-sensitive ecoregions to rebuild biomass. However, our findings also underscore the need to resolve trade-offs between climate-resilient biomass rebuilding and the high near-term demand for seafood to support the well-being of coastal communities across the tropics.


Assuntos
Mudança Climática , Ecossistema , Animais , Biomassa , Pesqueiros , Peixes , Humanos , Água
10.
PLoS One ; 17(6): e0265829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657827

RESUMO

The magnitude of subsidies provided to the fishing sector by governments worldwide is immense-an estimated $35.4 billion USD per year. The majority of these subsidies may be impeding efforts to sustainably manage fisheries by incentivizing overfishing and overcapacity. Recognizing the threat these subsidies pose, the World Trade Organization has set a goal of reaching an agreement that would end fisheries subsidies that contribute to overcapacity, overfishing, and illegal fishing. However, negotiations have been hampered by uncertainty around the likely effects of reforming these subsidies. Here we present a novel method for translating a bioeconomic model into an interactive online decision support tool that draws upon real-world data on fisheries subsidies and industrial fishing activity so users can directly compare the relative ambition levels of different subsidy reform options.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros
12.
Glob Chang Biol ; 28(7): 2312-2326, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35040239

RESUMO

Climate change is shifting the distribution of shared fish stocks between neighboring countries' Exclusive Economic Zones (EEZs) and the high seas. The timescale of these transboundary shifts determines how climate change will affect international fisheries governance. Here, we explore this timescale by coupling a large ensemble simulation of an Earth system model under a high emission climate change scenario to a dynamic population model. We show that by 2030, 23% of transboundary stocks will have shifted and 78% of the world's EEZs will have experienced at least one shifting stock. By the end of this century, projections show a total of 45% of stocks shifting globally and 81% of EEZs waters with at least one shifting stock. The magnitude of such shifts is reflected in changes in catch proportion between EEZs sharing a transboundary stock. By 2030, global EEZs are projected to experience an average change of 59% in catch proportion of transboundary stocks. Many countries that are highly dependent on fisheries for livelihood and food security emerge as hotspots for transboundary shifts. These hotspots are characterized by early shifts in the distribution of an important number of transboundary stocks. Existing international fisheries agreements need to be assessed for their capacity to address the social-ecological implications of climate-change-driven transboundary shifts. Some of these agreements will need to be adjusted to limit potential conflict between the parties of interest. Meanwhile, new agreements will need to be anticipatory and consider these concerns and their associated uncertainties to be resilient to global change.


El cambio climático está afectando la distribución de las poblaciones de fauna marina compartidas por Zonas Económicas Exclusivas (ZEEs) de países vecinos y en el alta mar. Los efectos del cambio climático en el manejo pesquero internacional estarán determinados por la escala temporal de dichos desplazamientos transfronterizos. Para determinar esa escala temporal, el presente estudio combinó un modelo dinámico poblacional, con una serie de simulaciones de un modelo del sistema terrestre, bajo un escenario de cambio climático de altas emisiones. Los resultados siguieren que para 2030, el 23% de las poblaciones transfronterizas se habrán desplazado y en el 78% de las ZEEs del mundo habrán experimentado cambios en la distribución de al menos una población transfronteriza. Para fines de este siglo, las proyecciones muestran que el 81% de las ZEEs tendrán al menos una población en movimiento y 45% de las poblaciones transfronterizas globales habrán cambiado su distribución. La magnitud de tal desplazamiento se reflejará en un cambio promedio del 59% de la proporción de captura de poblaciones transfronterizas entre ZEEs vecinas para el 2030. Muchos países que dependen de la pesca para sustento económico y seguridad alimentaria emergen como zonas críticas de cambios transfronterizos. Estas zonas se caracterizan por cambios tempranos en la distribución de un número importante de poblaciones transfronterizas. Por lo tanto, los acuerdos pesqueros internacionales deben evaluarse por su capacidad para responder a los impactos socio-ecológicos del desplazamiento de poblaciones transfronterizas debido al cambio climático. Dichos acuerdos deberán de ser ajustados para limitar los posibles conflictos entre las partes de interés y evitar amenazar la sustentabilidad del recurso. Así mismo, los nuevos acuerdos que vayan a establecerse deberán considerar los posibles cambios en la distribución de poblaciones compartidas (y la incertidumbre asociada) para anticiparse a dichos conflictos y aumentar la resiliencia frente al cambio climático.


Le changement climatique altère la distribution des stocks de poissons exploités posant de sérieux problèmes de juridiction et gestion des espèces partagées entre pays voisins, et/ou avec la haute mer. C'est en analysant l'échelle de temps de ces migrations transfrontalières que l'impact du changement climatique sur la gouvernance mondiale des pêches peut être évalué. Dans cette étude, nous explorons cette échelle de temps à l'aide d'un modèle de dynamique des populations marines exploitées couplé à des simulations dérivées d'un ensemble de modèles globaux océan-atmosphère. Les résultats montrent que d'ici 2030, pour le scénario à hautes émissions, 23% des stocks transfrontaliers auront changé de distribution et que 78% des zones économiques exclusives (ZEE) expérimenteront au moins une nouvelle espèce transfrontalière. A la fin du siècle, et pour ce même scénario, 81% des ZEE auront au moins une espèce transfrontalière et 45% des stocks transfrontaliers auront changé de distribution. La magnitude de tels changements de distribution est ici quantifiée par la variation dans la proportion de capture entre ZEE partageant ce stock transfrontalier. D'ici 2030, de tels changements entre ZEE seront de l'ordre de 59% à l'échelle globale, avec de nombreux pays dont la qualité de vie et la sécurité alimentaire dépendent de la pêche émergeant comme zones à haut risque. Ces zones se caractérisent par le déplacement précoce d'un grand nombre de stocks transfrontaliers. A la lumière de ces résultats, les traités et accords de pêche internationaux doivent être évalués pour leur capacité à répondre aux implications socio-écologiques du changement climatique et renégocier afin d'éviter tout conflit entre pays voisins. En anticipant des changements potentiels de distribution entre stocks transfrontaliers, tout nouvel accord de pêche se voudra plus résilient aux effets du changement climatique.


As mudanças climáticas vêm promovendo alterações na distribuição dos estoques de peixes compartilhados por países vizinhos, tanto nas suas Zonas Econômicas Exclusivas (ZEE) como em águas oceânicas internacionais. A escala de tempo desse deslocamento transfronteiriço vai determinar como as mudanças climáticas afetarão o manejo pesqueiro internacional. Diante disso, o presente trabalho teve por objetivo analisar essa escala de tempo, combinando um amplo conjunto de simulações de um modelo do sistema terrestre sob um cenário de mudanças climáticas de altas emissões a um modelo de dinâmica populacional. Foi observado que, para 2030, 23% dos estoques transfronteiriços terão suas distribuições alteradas e 78% das ZEEs do mundo terão experimentado deslocamentos em pelo menos um estoque transfronteiriço. No final deste século, as projeções mostram que 45% dos estoques transfronteiriços do mundo sofrerão alterações e que 81% das ZEEs apresentarão alterações em pelo menos um estoque. A magnitude de tal deslocamento será refletida por uma mudança média de 59% na proporção de capturas de estoques transfronteiriços entre ZEEs vizinhas no ano de 2030. Muitos países que são altamente dependentes da pesca para subsistência e segurança alimentar surgem como pontos críticos para mudanças transfronteiriças. Estes são caracterizados por mudanças iniciais na distribuição de um número importante de estoques transfronteiriços. Os acordos internacionais de pesca precisam ser avaliados quanto à sua capacidade de abordar as implicações sócio-ecológicas de deslocamentos transfronteiriços impulsionados pelas mudanças climáticas e ajustados para limitar um possível conflito entre as partes de interesse. Da mesma forma, novos acordos devem considerar possíveis mudanças na distribuição de populações transfronteiriças a fim de antecipar tais conflitos e construir resiliência em face das mudanças climáticas e das incertezas que as acompanha.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Mudança Climática , Ecossistema , Peixes , Oceanos e Mares
13.
Nat Food ; 3(10): 851-861, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-37117898

RESUMO

Injustices are prevalent in food systems, where the accumulation of vast wealth is possible for a few, yet one in ten people remain hungry. Here, for 194 countries we combine aquatic food production, distribution and consumption data with corresponding national policy documents and, drawing on theories of social justice, explore whether barriers to participation explain unequal distributions of benefits. Using Bayesian models, we find economic and political barriers are associated with lower wealth-based benefits; countries produce and consume less when wealth, formal education and voice and accountability are lacking. In contrast, social barriers are associated with lower welfare-based benefits; aquatic foods are less affordable where gender inequality is greater. Our analyses of policy documents reveal a frequent failure to address political and gender-based barriers. However, policies linked to more just food system outcomes centre principles of human rights, specify inclusive decision-making processes and identify and challenge drivers of injustice.

15.
Sci Adv ; 7(40): eabh0895, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597142

RESUMO

Extreme temperature events have occurred in all ocean basins in the past two decades with detrimental impacts on marine biodiversity, ecosystem functions, and services. However, global impacts of temperature extremes on fish stocks, fisheries, and dependent people have not been quantified. Using an integrated climate-biodiversity-fisheries-economic impact model, we project that, on average, when an annual high temperature extreme occurs in an exclusive economic zone, 77% of exploited fishes and invertebrates therein will decrease in biomass while maximum catch potential will drop by 6%, adding to the decadal-scale mean impacts under climate change. The net negative impacts of high temperature extremes on fish stocks are projected to cause losses in fisheries revenues and livelihoods in most maritime countries, creating shocks to fisheries social-ecological systems particularly in climate-vulnerable areas. Our study highlights the need for rapid adaptation responses to extreme temperatures in addition to carbon mitigation to support sustainable ocean development.

17.
Ecol Lett ; 24(12): 2563-2575, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34469020

RESUMO

Arctic sea ice loss has direct consequences for predators. Climate-driven distribution shifts of native and invasive prey species may exacerbate these consequences. We assessed potential changes by modelling the prey base of a widely distributed Arctic predator (ringed seal; Pusa hispida) in a sentinel area for change (Hudson Bay) under high- and low-greenhouse gas emission scenarios from 1950 to 2100. All changes were relatively negligible under the low-emission scenario, but under the high-emission scenario, we projected a 50% decline in the abundance of the well-distributed, ice-adapted and energy-rich Arctic cod (Boreogadus saida) and an increase in the abundance of smaller temperate-associated fish in southern and coastal areas. Furthermore, our model predicted that all fish species declined in mean body size, but a 29% increase in total prey biomass. Declines in energy-rich prey and restrictions in their spatial range are likely to have cascading effects on Arctic predators.


Assuntos
Mudança Climática , Focas Verdadeiras , Animais , Regiões Árticas , Peixes , Camada de Gelo
18.
Nat Commun ; 12(1): 5413, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526495

RESUMO

Numerous studies have focused on the need to expand production of 'blue foods', defined as aquatic foods captured or cultivated in marine and freshwater systems, to meet rising population- and income-driven demand. Here we analyze the roles of economic, demographic, and geographic factors and preferences in shaping blue food demand, using secondary data from FAO and The World Bank, parameters from published models, and case studies at national to sub-national scales. Our results show a weak cross-sectional relationship between per capita income and consumption globally when using an aggregate fish metric. Disaggregation by fish species group reveals distinct geographic patterns; for example, high consumption of freshwater fish in China and pelagic fish in Ghana and Peru where these fish are widely available, affordable, and traditionally eaten. We project a near doubling of global fish demand by mid-century assuming continued growth in aquaculture production and constant real prices for fish. Our study concludes that nutritional and environmental consequences of rising demand will depend on substitution among fish groups and other animal source foods in national diets.


Assuntos
Peixes/crescimento & desenvolvimento , Abastecimento de Alimentos/estatística & dados numéricos , Alimentos , Renda/estatística & dados numéricos , Alimentos Marinhos/estatística & dados numéricos , África , Animais , Aquicultura/métodos , Ásia , Europa (Continente) , Abastecimento de Alimentos/métodos , Água Doce , Geografia , Saúde Global , Humanos , Modelos Teóricos , América do Norte , Alimentos Marinhos/provisão & distribuição , América do Sul
19.
Nat Commun ; 12(1): 3259, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103490

RESUMO

The ocean, which regulates climate and supports vital ecosystem services, is crucial to our Earth system and livelihoods. Yet, it is threatened by anthropogenic pressures and climate change. A healthy ocean that supports a sustainable ocean economy requires adequate financing vehicles that generate, invest, align, and account for financial capital to achieve sustained ocean health and governance. However, the current finance gap is large; we identify key barriers to financing a sustainable ocean economy and suggest how to mitigate them, to incentivize the kind of public and private investments needed for topnotch science and management in support of a sustainable ocean economy.

20.
Nat Food ; 2(9): 673-682, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37117477

RESUMO

Aquatic foods from marine and freshwater systems are critical to the nutrition, health, livelihoods, economies and cultures of billions of people worldwide, but climate-related hazards may compromise their ability to provide these benefits. Here, we estimate national-level aquatic food system climate risk using an integrative food systems approach that connects climate hazards impacting marine and freshwater capture fisheries and aquaculture to their contributions to sustainable food system outcomes. We show that without mitigation, climate hazards pose high risks to nutritional, social, economic and environmental outcomes worldwide-especially for wild-capture fisheries in Africa, South and Southeast Asia, and Small Island Developing States. For countries projected to experience compound climate risks, reducing societal vulnerabilities can lower climate risk by margins similar to meeting Paris Agreement mitigation targets. System-level interventions addressing dimensions such as governance, gender equity and poverty are needed to enhance aquatic and terrestrial food system resilience and provide investments with large co-benefits towards meeting the Sustainable Development Goals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA