Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 833555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350413

RESUMO

Soybean whey, as a byproduct of soybean industry, has caused considerable concern recently because of its abundant nutrients. To further utilize soybean whey, it was fermented with Weissella hellenica D1501, and the neuroprotective potency of this beverage was studied in the present work. The phenolic profile and antioxidant capacity of fermented soybean whey (FSBW) were analyzed. The neuroprotective effects were evaluated based on the hydrogen peroxide-stimulated oxidative damage model in a neural-like cell (PC12). Results demonstrated that soybean whey's phenolic contents and antioxidant activities were markedly improved after fermentation. Glycoside isoflavones were efficiently converted into aglycones by W. hellenica D1501. FSBW extract apparently increased cell viability, decreased reactive oxide species levels, and protected antioxidant enzymes in oxidative damage. Furthermore, FSBW effectively reduced apoptosis rate by inhibiting Bax protein and improving Bcl-2 and Bcl-xL proteins. FSBW ameliorated the cell cycle through the decrease of p21 protein and an increase of cyclin A protein. The findings of this study thus suggested that W. hellenica D1501-fermented soybean whey could potentially protect nerve cells against oxidative damage.

2.
Eur J Nutr ; 61(2): 779-792, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34553258

RESUMO

PURPOSE: Soy whey is a byproduct generated from the processing of several soybean products. Its valorization has continued to attract significant research interest in recent times due to the nutritional and bioactive potency of its chemical composition. Herein, the neuroprotective potency of a soy whey fermented by Cordyceps militaris SN-18 against hydrogen peroxide (H2O2)-induced oxidative injury in PC12 cells was investigated. METHODS: The phenolic compositions were analyzed by high-performance liquid chromatography. Antioxidant activities were assessed by ABTS•+ scavenging assay, DPPH radical scavenging assay, reducing power assay, and ferric reducing antioxidant power assay. The neuroprotective effects of fermented soy whey (FSW) were investigated based on the oxidative injury model in PC12 cells. RESULTS: FSW possessed higher total phenolic content and antioxidant activities compared with unfermented soy whey (UFSW) and that most of the isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. The extract from FSW exhibited a greater protective effect on PC12 cells against oxidative injury by promoting cell proliferation, restoring cell morphology, inhibiting lactic dehydrogenase leakage, reducing reactive oxygen species levels, and enhancing antioxidant enzyme activities compared with that from UFSW. Additionally, cell apoptosis was significantly inhibited by FSW through down-regulation of caspase-3, caspase-9, and Bax and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was attenuated by FSW through increasing cyclin A, CDK1 and CDK2, and decreasing p21 protein. CONCLUSION: Fermentation with C. militaris SN-18 could significantly improve the bioactivity of soy whey by enhancing the ability of nerve cells to resist oxidative damage.


Assuntos
Cordyceps , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Cordyceps/metabolismo , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Células PC12 , Ratos , Glycine max/metabolismo , Soro do Leite/metabolismo
3.
Foods ; 10(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34574232

RESUMO

Bacteriocinogenic Lactobacillus fermentum BZ532 with novel bacteriocin LF-BZ532 was originally isolated from Chinese cereal fermented drink, showing an antimicrobial characteristic during fermentation. This study aimed to explore the in situ antimicrobial activities of L. fermentum BZ532 and co-culturing investigation against key food pathogens, i.e., Staphylococcus aureus and Escherichia coli K-12, was conducted during fresh bozai production. The growth of spoilage bacteria was suppressed and bacterial count was reduced to a significantly low level during 48 h of co-cultures. In situ production of antimicrobial compounds expressed positive activity against S. aureus and E. coli K-12, but negative acitivity against Salmonella sp. D104. The total viable count of bozai BZ-Lf (bozai fermented with BZ532 strain) had a comparatively lower viable count than bozai BZ-C (bozai as an experimental control without BZ532) during storage of 7 days. Titratable acidity of bozai treatments (BZ-C, BZ-Lf) was increased, while pH declined accordingly during storage of 7 days. The organoleptic quality of bozai BZ-C had low sensorial scores as compared with BZ-Lf during storage. In comparison with naturally fermented bozai (BZ-C), L. fermentum BZ532 (BZ-Lf) could significantly reduce the microbial spoilage and extend the shelf-life based on microbiological examination. Conclusively, L. fermentum BZ532 can be used as a bio-protective culture for improving the safety of bozai.

4.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069784

RESUMO

Fermented soybean products have attracted great attention due to their health benefits. In the present study, the hypoxia-injured PC12 cells induced by cobalt chloride (CoCl2) were used to evaluate the neuroprotective potency of tofu fermented by Actinomucor elegans (FT). Results indicated that FT exhibited higher phenolic content and antioxidant activity than tofu. Moreover, most soybean isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. FT demonstrated a significant protective effect on PC12 cells against hypoxic injury by maintaining cell viability, reducing lactic dehydrogenase leakage, and inhibiting oxidative stress. The cell apoptosis was significantly attenuated by the FT through down-regulation of caspase-3, caspases-8, caspase-9, and Bax, and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was significantly inhibited by the FT through increasing cyclin A and decreasing the p21 protein level. Furthermore, treatment with the FT activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. Overall, FT offered a potential protective effect on nerve cells in vitro against hypoxic damage.


Assuntos
Cobalto/toxicidade , Mucorales/metabolismo , Fármacos Neuroprotetores/farmacologia , Alimentos de Soja , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fermentação , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fenóis/química , Ratos
5.
Food Chem ; 339: 127849, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858383

RESUMO

Anthocyanin-rich purple highland barley has attracted great attention recently due to its health benefits in humans. The composition of the purified anthocyanin extract (PAE) from purple highland barley bran (PHBB) was characterized by liquid chromatography-mass spectrometry (LC-MS) with a high acylated anthocyanin profile. PAE exhibited high antioxidant activity and potential neuroprotective effects on cobalt chloride (CoCl2)-induced hypoxic damage in PC12 cells by maintaining cell viability, restoring cell morphology, inhibiting lactic dehydrogenase (LDH) leakage, reducing reactive oxygen species (ROS) levels, enhancing antioxidant enzyme activities, inhibiting cell apoptosis, and attenuating cell cycle arrest. Treatment cells (PC12 and U2OS) with PAE activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. This study demonstrated that PAE from the PHBB was a high-quality natural functional food colorant and potentially could be used as a preventive agent for brain dysfunction caused by hypoxic damage.


Assuntos
Antocianinas/análise , Antioxidantes/química , Hordeum/química , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cobalto/toxicidade , Hordeum/metabolismo , Humanos , Espectrometria de Massas , Fármacos Neuroprotetores/farmacologia , Células PC12 , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Ratos , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA