Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607253

RESUMO

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Assuntos
Oxirredução , Transaldolase , Espectroscopia por Absorção de Raios X , Cisteína/química , Cisteína/metabolismo , Lisina/química , Lisina/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/química , Processamento de Proteína Pós-Traducional , Soluções , Enxofre/química , Enxofre/metabolismo , Transaldolase/metabolismo , Transaldolase/química
2.
Nat Commun ; 15(1): 411, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195625

RESUMO

Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for preventing future COVID outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation in vitro and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include a disulfide-dithiol switch between the catalytic cysteine C145 and cysteine C117, and generation of an allosteric cysteine-lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and inhibit Mpro activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS-CoV and SARS-CoV, indicating their potential as common druggable sites.


Assuntos
COVID-19 , Cisteína , Humanos , SARS-CoV-2 , Desenho de Fármacos , Oxirredução
3.
J Phys Chem B ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37748048

RESUMO

The activation mechanism of thiamine diphosphate (ThDP) in enzymes has long been the subject of intense research and controversial discussion. Particularly contentious is the formation of a carbene intermediate, the first one observed in an enzyme. For the formation of the carbene to take place, both intramolecular and intermolecular proton transfer pathways have been proposed. However, the physiologically relevant pH of ThDP-dependent enzymes around neutrality does not seem to be suitable for the formation of such reactive chemical species. Herein, we investigate the general mechanism of activation of the ThDP cofactor in human transketolase (TKT), by means of electronic structure methods. We show that in the case of the human TKT, the carbene species is accessible through a pKa shift induced by the electrostatics of a neighboring histidine residue (H110), whose protonation state change modulates the pKa of ThDP and suppresses the latter by more than 6 pH units. Our findings highlight that ThDP enzymes activate the cofactor beyond simple geometric constraints and the canonical glutamate. Such observations in nature can pave the way for the design of biomimetic carbene catalysts and the engineering of tailored enzymatic carbenes.

4.
Angew Chem Int Ed Engl ; 62(36): e202304163, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37294559

RESUMO

Recently, a new naturally occurring covalent linkage was characterised, involving a cysteine and a lysine, bridged through an oxygen atom. The latter was dubbed as the NOS bond, reflecting the individual atoms involved in this uncommon bond which finds little parallel in lab chemistry. It is found to form under oxidising conditions and is reversible upon addition of reducing agents. Further studies have identified the bond in crystal structures across a variety of systems and organisms, potentially playing an important role in regulation, cellular defense and replication. Not only that, double NOS bonds have been identified and even found to be competitive in relation to the formation of disulfide bonds. This raises several questions about how this exotic bond comes to be, what are the intermediates involved in its formation and how it competes with other pathways of sulfide oxidation. With this objective in mind, we revisited our first proposed mechanism for the reaction with model electronic structure calculations, adding information about the reactivity with alternative reactive oxygen species and other potential competing products of oxidation. We present a network with more than 30 reactions which provides one of the most encompassing pictures for cysteine oxidation pathways to date.

5.
Science ; 379(6636): 996-1003, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893255

RESUMO

Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment.


Assuntos
Metabolismo dos Carboidratos , L-Lactato Desidrogenase , Metaboloma , Humanos , Ácidos Graxos/metabolismo , L-Lactato Desidrogenase/metabolismo , Especificidade de Órgãos , Espectrometria de Massas/métodos , Regulação Alostérica
6.
Curr Opin Struct Biol ; 76: 102441, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988322

RESUMO

Enzymes that use thiamin diphosphate (ThDP), the biologically active derivative of vitamin B1, as a cofactor play important roles in cellular metabolism in all domains of life. The analysis of ThDP enzymes in the past decades have provided a general framework for our understanding of enzyme catalysis of this protein family. In this review, we will discuss recent advances in the field that include the observation of "unusual" reactions and reaction intermediates that highlight the chemical versatility of the thiamin cofactor. Further topics cover the structural basis of cooperativity of ThDP enzymes, novel insights into the mechanism and structure of selected enzymes, and the discovery of "superassemblies" as reported, for example, acetohydroxy acid synthase. Finally, we summarize recent findings in the structural organisation and mode of action of 2-keto acid dehydrogenase multienzyme complexes and discuss future directions of this exciting research field.


Assuntos
Acetolactato Sintase , Tiamina Pirofosfato , Acetolactato Sintase/metabolismo , Difosfatos , Complexos Multienzimáticos , Oxirredutases , Tiamina , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo
7.
J Am Chem Soc ; 144(25): 11270-11282, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35652913

RESUMO

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. Escherichia coli class Ia RNR is an α2ß2 enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and ß, to initiate, using its metallo-cofactor in ß2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y356(ß) and Y731(α) across the α/ß interface. Using 2,3,5-F3Y122-ß2 with 3,5-F2Y731-α2, GDP (substrate) and TTP (allosteric effector), a Y356• intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron-electron double resonance spectroscopies. 94 GHz 19F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y356• and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the double mutant E52Q/F3Y122-ß2 were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with 3,5-F2Y731 within the H-bond distance to Y356•, whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y356 and Y731. The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism.


Assuntos
Ribonucleotídeo Redutases , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Escherichia coli/metabolismo , Flúor , Modelos Moleculares , Oxirredução , Prótons , Ribonucleotídeo Redutases/química , Tirosina/química
8.
Trends Biochem Sci ; 47(5): 372-374, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427478

RESUMO

Modifications of cysteine residues in redox-sensitive proteins are key to redox signaling and stress response in all organisms. A novel type of redox switch was recently discovered that comprises lysine and cysteine residues covalently linked by an nitrogen-oxygen-sulfur (NOS) bridge. Here, we discuss chemical and biological implications of this discovery.


Assuntos
Cisteína , Lisina , Cisteína/química , Lisina/metabolismo , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Proteínas/química
9.
Nat Chem Biol ; 18(4): 368-375, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165445

RESUMO

We recently reported the discovery of a lysine-cysteine redox switch in proteins with a covalent nitrogen-oxygen-sulfur (NOS) bridge. Here, a systematic survey of the whole protein structure database discloses that NOS bridges are ubiquitous redox switches in proteins of all domains of life and are found in diverse structural motifs and chemical variants. In several instances, lysines are observed in simultaneous linkage with two cysteines, forming a sulfur-oxygen-nitrogen-oxygen-sulfur (SONOS) bridge with a trivalent nitrogen, which constitutes an unusual native branching cross-link. In many proteins, the NOS switch contains a functionally essential lysine with direct roles in enzyme catalysis or binding of substrates, DNA or effectors, linking lysine chemistry and redox biology as a regulatory principle. NOS/SONOS switches are frequently found in proteins from human and plant pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and also in many human proteins with established roles in gene expression, redox signaling and homeostasis in physiological and pathophysiological conditions.


Assuntos
COVID-19 , Cisteína , Cisteína/química , Humanos , Lisina/metabolismo , Oxirredução , SARS-CoV-2
10.
Plant Physiol ; 187(4): 2803-2819, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34890459

RESUMO

Systemic acquired resistance (SAR) is a plant immune response established in uninfected leaves after colonization of local leaves with biotrophic or hemibiotrophic pathogens. The amino acid-derived metabolite N-hydroxypipecolic acid (NHP) travels from infected to systemic leaves, where it activates salicylic acid (SA) biosynthesis through the isochorismate pathway. The resulting increased SA levels are essential for induction of a large set of SAR marker genes and full SAR establishment. In this study, we show that pharmacological treatment of Arabidopsis thaliana with NHP induces a subset of SAR-related genes even in the SA induction-deficient2 (sid2/isochorismate synthase1) mutant, which is devoid of NHP-induced SA. NHP-mediated induction is abolished in sid2-1 NahG plants, in which basal SA levels are degraded. The SA receptor NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) and its interacting TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA) transcription factors are required for the NHP-mediated induction of SAR genes at resting SA levels. Isothermal titration analysis determined a KD of 7.9 ± 0.5 µM for the SA/NPR1 complex, suggesting that basal levels of SA would not bind to NPR1 unless yet unknown potentially NHP-induced processes increase the affinity. Moreover, the nucleocytoplasmic protein PHYTOALEXIN DEFICIENT4 is required for a slight NHP-mediated increase in NPR1 protein levels and NHP-induced expression of SAR-related genes. Our experiments have unraveled that NHP requires basal SA and components of the SA signaling pathway to induce SAR genes. Still, the mechanism of NHP perception remains enigmatic.


Assuntos
Arabidopsis/fisiologia , Ácidos Pipecólicos/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Transcrição Gênica , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
11.
Biomolecules ; 11(10)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680140

RESUMO

Many multicellular organisms specify germ cells during early embryogenesis by the inheritance of ribonucleoprotein (RNP) granules known as germplasm. However, the role of complex interactions of RNP granules during germ cell specification remains elusive. This study characterizes the interaction of RNP granules, Buc, and zebrafish Vasa (zfVasa) during germ cell specification. We identify a novel zfVasa-binding motif (Buc-VBM) in Buc and a Buc-binding motif (zfVasa-BBM) in zfVasa. Moreover, we show that Buc and zfVasa directly bind in vitro and that this interaction is independent of the RNA. Our circular dichroism spectroscopy data reveal that the intrinsically disordered Buc-VBM peptide forms alpha-helices in the presence of the solvent trifluoroethanol. Intriguingly, we further demonstrate that Buc-VBM enhances zfVasa ATPase activity, thereby annotating the first biochemical function of Buc as a zfVasa ATPase activator. Collectively, these results propose a model in which the activity of zfVasa is a central regulator of primordial germ cell (PGC) formation and is tightly controlled by the germplasm organizer Buc.


Assuntos
RNA Helicases DEAD-box/genética , Ribonucleoproteínas/genética , Proteínas de Peixe-Zebra/genética , Adenosina Trifosfatases/genética , Animais , Citoplasma , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Ligação Proteica/genética , RNA/genética , Peixe-Zebra/genética
12.
Nature ; 593(7859): 460-464, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953398

RESUMO

Disulfide bonds between cysteine residues are important post-translational modifications in proteins that have critical roles for protein structure and stability, as redox-active catalytic groups in enzymes or allosteric redox switches that govern protein function1-4. In addition to forming disulfide bridges, cysteine residues are susceptible to oxidation by reactive oxygen species, and are thus central not only to the scavenging of these but also to cellular signalling and communication in biological as well as pathological contexts5,6. Oxidized cysteine species are highly reactive and may form covalent conjugates with, for example, tyrosines in the active sites of some redox enzymes7,8. However, to our knowledge, regulatory switches with covalent crosslinks other than disulfides have not previously been demonstrated. Here we report the discovery of a covalent crosslink between a cysteine and a lysine residue with a NOS bridge that serves as an allosteric redox switch in the transaldolase enzyme of Neisseria gonorrhoeae, the pathogen that causes gonorrhoea. X-ray structure analysis of the protein in the oxidized and reduced state reveals a loaded-spring mechanism that involves a structural relaxation upon redox activation, which is propagated from the allosteric redox switch at the protein surface to the active site in the protein interior. This relaxation leads to a reconfiguration of key catalytic residues and elicits an increase in enzymatic activity of several orders of magnitude. The redox switch is highly conserved in related transaldolases from other members of the Neisseriaceae; for example, it is present in the transaldolase of Neisseria meningitides (a pathogen that is the primary cause of meningitis and septicaemia in children). We surveyed the Protein Data Bank and found that the NOS bridge exists in diverse protein families across all domains of life (including Homo sapiens) and that it is often located at catalytic or regulatory hotspots. Our findings will inform strategies for the design of proteins and peptides, as well as the development of new classes of drugs and antibodies that target the lysine-cysteine redox switch9,10.


Assuntos
Cisteína/metabolismo , Lisina/metabolismo , Nitrogênio/química , Oxigênio/química , Enxofre/química , Transaldolase/química , Transaldolase/metabolismo , Regulação Alostérica , Animais , Sequência Conservada , Bases de Dados de Proteínas , Ativação Enzimática , Humanos , Modelos Moleculares , Neisseria gonorrhoeae/enzimologia , Oxirredução
13.
Nat Chem Biol ; 16(11): 1237-1245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839604

RESUMO

The natural antivitamin 2'-methoxy-thiamine (MTh) is implicated in the suppression of microbial growth. However, its mode of action and enzyme-selective inhibition mechanism have remained elusive. Intriguingly, MTh inhibits some thiamine diphosphate (ThDP) enzymes, while being coenzymatically active in others. Here we report the strong inhibition of Escherichia coli transketolase activity by MTh and unravel its mode of action and the structural basis thereof. The unique 2'-methoxy group of MTh diphosphate (MThDP) clashes with a canonical glutamate required for cofactor activation in ThDP-dependent enzymes. This glutamate is forced into a stable, anticatalytic low-barrier hydrogen bond with a neighboring glutamate, disrupting cofactor activation. Molecular dynamics simulations of transketolases and other ThDP enzymes identify active-site flexibility and the topology of the cofactor-binding locale as key determinants for enzyme-selective inhibition. Human enzymes either retain enzymatic activity with MThDP or preferentially bind authentic ThDP over MThDP, while core bacterial metabolic enzymes are inhibited, demonstrating therapeutic potential.


Assuntos
Antibacterianos/metabolismo , Inibidores Enzimáticos/metabolismo , Tiamina/metabolismo , Transcetolase/antagonistas & inibidores , Sequência de Aminoácidos , Antibacterianos/farmacologia , Domínio Catalítico , Coenzimas/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Ácido Glutâmico/metabolismo , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Tiamina/farmacologia , Tiamina Pirofosfato/metabolismo , Transcetolase/genética
14.
Biochemistry ; 59(28): 2585-2591, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32551535

RESUMO

Amyloidogenic plaques are hallmarks of Alzheimer's disease (AD) and typically consist of high percentages of modified Aß peptides bearing N-terminally cyclized glutamate residues. The human zinc(II) enzyme glutaminyl cyclase (QC) was shown in vivo to catalyze the cyclization of N-terminal glutamates of Aß peptides in a pathophysiological side reaction establishing QC as a druggable target for therapeutic treatment of AD. Here, we report crystallographic snapshots of human QC catalysis acting on the neurohormone neurotensin that delineate the stereochemical course of catalysis and suggest that hydrazides could mimic the transition state of peptide cyclization and deamidation. This hypothesis is validated by a sparse-matrix inhibitor screening campaign that identifies hydrazides as the most potent metal-binding group compared to classic Zn binders. The structural basis of hydrazide inhibition is illuminated by X-ray structure analysis of human QC in complex with a hydrazide-bearing peptide inhibitor and reveals a pentacoordinated Zn complex. Our findings inform novel strategies in the design of potent and highly selective QC inhibitors by employing hydrazides as the metal-binding warhead.


Assuntos
Doença de Alzheimer/enzimologia , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Inibidores Enzimáticos/química , Hidrazinas/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Aminoaciltransferases/química , Cristalografia por Raios X , Ciclização/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Hidrazinas/farmacologia , Modelos Moleculares , Terapia de Alvo Molecular , Neurotensina/metabolismo , Conformação Proteica/efeitos dos fármacos
15.
Chembiochem ; 21(18): 2615-2619, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32315494

RESUMO

The family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDRs) comprises numerous biocatalysts capable of C=O or C=C reduction. The highly homologous noroxomaritidine reductase (NR) from Narcissus sp. aff. pseudonarcissus and Zt_SDR from Zephyranthes treatiae, however, are SDRs with an extended imine substrate scope. Comparison with a similar SDR from Asparagus officinalis (Ao_SDR) exhibiting keto-reducing activity, yet negligible imine-reducing capability, and mining the Short-Chain Dehydrogenase/Reductase Engineering Database indicated that NR and Zt_SDR possess a unique active-site composition among SDRs. Adapting the active site of Ao_SDR accordingly improved its imine-reducing capability. By applying the same strategy, an unrelated SDR from Methylobacterium sp. 77 (M77_SDR) with distinct keto-reducing activity was engineered into a promiscuous enzyme with imine-reducing activity, thereby confirming that the ability to reduce imines can be rationally introduced into members of the "classical" SDR enzyme family. Thus, members of the SDR family could be a promising starting point for protein approaches to generate new imine-reducing enzymes.


Assuntos
Iminas/metabolismo , Cetonas/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Asparagus/enzimologia , Iminas/química , Cetonas/química , Methylobacterium/enzimologia , Modelos Moleculares , Estrutura Molecular , Oxirredução , Redutases-Desidrogenases de Cadeia Curta/química
16.
Cell ; 180(6): 1130-1143.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32160528

RESUMO

Fatty acid synthases (FASs) are central to metabolism but are also of biotechnological interest for the production of fine chemicals and biofuels from renewable resources. During fatty acid synthesis, the growing fatty acid chain is thought to be shuttled by the dynamic acyl carrier protein domain to several enzyme active sites. Here, we report the discovery of a γ subunit of the 2.6 megadalton α6-ß6S. cerevisiae FAS, which is shown by high-resolution structures to stabilize a rotated FAS conformation and rearrange ACP domains from equatorial to axial positions. The γ subunit spans the length of the FAS inner cavity, impeding reductase activities of FAS, regulating NADPH turnover by kinetic hysteresis at the ketoreductase, and suppressing off-pathway reactions at the enoylreductase. The γ subunit delineates the functional compartment within FAS. As a scaffold, it may be exploited to incorporate natural and designed enzymatic activities that are not present in natural FAS.


Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Aciltransferases/metabolismo , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
17.
Nature ; 573(7775): 609-613, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31534226

RESUMO

The underlying molecular mechanisms of cooperativity and allosteric regulation are well understood for many proteins, with haemoglobin and aspartate transcarbamoylase serving as prototypical examples1,2. The binding of effectors typically causes a structural transition of the protein that is propagated through signalling pathways to remote sites and involves marked changes on the tertiary and sometimes even the quaternary level1-5. However, the origin of these signals and the molecular mechanism of long-range signalling at an atomic level remain unclear5-8. The different spatial scales and timescales in signalling pathways render experimental observation challenging; in particular, the positions and movement of mobile protons cannot be visualized by current methods of structural analysis. Here we report the experimental observation of fluctuating low-barrier hydrogen bonds as switching elements in cooperativity pathways of multimeric enzymes. We have observed these low-barrier hydrogen bonds in ultra-high-resolution X-ray crystallographic structures of two multimeric enzymes, and have validated their assignment using computational calculations. Catalytic events at the active sites switch between low-barrier hydrogen bonds and ordinary hydrogen bonds in a circuit that consists of acidic side chains and water molecules, transmitting a signal through the collective repositioning of protons by behaving as an atomistic Newton's cradle. The resulting communication synchronizes catalysis in the oligomer. Our studies provide several lines of evidence and a working model for not only the existence of low-barrier hydrogen bonds in proteins, but also a connection to enzyme cooperativity. This finding suggests new principles of drug and enzyme design, in which sequences of residues can be purposefully included to enable long-range communication and thus the regulation of engineered biomolecules.


Assuntos
Modelos Moleculares , Transcetolase/química , Transcetolase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/enzimologia , Humanos , Ligação de Hidrogênio , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Simulação de Dinâmica Molecular , Mutação , Estrutura Terciária de Proteína , Piruvato Oxidase/química , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Transcetolase/genética
18.
Structure ; 27(7): 1124-1136.e4, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31130485

RESUMO

The pseudo-atomic structural model of human pyruvate dehydrogenase complex (PDHc) core composed of full-length E2 and E3BP components, calculated from our cryoelectron microscopy-derived density maps at 6-Å resolution, is similar to those of prokaryotic E2 structures. The spatial organization of human PDHc components as evidenced by negative-staining electron microscopy and native mass spectrometry is not homogeneous, and entails the unanticipated formation of local clusters of E1:E2 and E3BP:E3 complexes. Such uneven, clustered organization translates into specific duties for E1-E2 clusters (oxidative decarboxylation and acetyl transfer) and E3BP-E3 clusters (regeneration of reduced lipoamide) corresponding to half-reactions of the PDHc catalytic cycle. The addition of substrate coenzyme A modulates the conformational landscape of PDHc, in particular of the lipoyl domains, extending the postulated multiple random coupling mechanism. The conformational and associated chemical landscapes of PDHc are thus not determined entirely stochastically, but are restrained and channeled through an asymmetric architecture and further modulated by substrate binding.


Assuntos
Acetilcoenzima A/química , Coenzima A/química , Subunidades Proteicas/química , Complexo Piruvato Desidrogenase/química , Acetilcoenzima A/metabolismo , Domínio Catalítico , Clonagem Molecular , Coenzima A/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
19.
Biochemistry ; 56(13): 1854-1864, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28296385

RESUMO

Electronic absorption spectra are oftentimes used to identify reaction intermediates or substrates/products in enzymatic systems, as long as absorption bands can be unequivocally assigned to the species being studied. The latter task is far from trivial given the transient nature of some states and the complexity of the surrounding environment around the active site. To identify unique spectral fingerprints, controlled experiments with model compounds have been used in the past, but even these can sometimes be unreliable. Circular dichroism (CD) and ultraviolet-visible spectra have been tools of choice in the study of the rich chemistry of thiamin diphosphate-dependent enzymes. In this study, we focus on the Zymomonas mobilis pyruvate decarboxylase, and mutant analogues thereof, as a prototypical representative of the thiamin diphosphate (ThDP) enzyme superfamily. Through the use of electronic structure methods, we analyze the nature of electronic excitations in the cofactor. We find that all the determining CD bands around the 280-340 nm spectral range correspond to charge-transfer excitations between the pyrimidine and thiazolium rings of ThDP, which, most likely, is a general property of related ThDP-dependent enzymes. While we can confirm the assignments of previously proposed bands to chemical states, our calculations further suggest that a hitherto unassigned band of enzyme-bound ThDP reports on the ionization state of the canonical glutamate that is required for cofactor activation. This finding expands the spectroscopic "library" of chemical states of ThDP enzymes, permitting a simultaneous assignment of both the cofactor ThDP and the activating glutamate. We anticipate this finding to be helpful for mechanistic analyses of related ThDP enzymes.


Assuntos
Proteínas de Bactérias/química , Coenzimas/química , Ácido Glutâmico/química , Piruvato Descarboxilase/química , Tiamina Pirofosfato/química , Zymomonas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Coenzimas/metabolismo , Transporte de Elétrons , Expressão Gênica , Ácido Glutâmico/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína , Pirimidinas/química , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Eletricidade Estática , Termodinâmica , Tiamina Pirofosfato/metabolismo , Zymomonas/enzimologia
20.
Sci Rep ; 6: 35716, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767080

RESUMO

The S385Y/D469T/R520Q variant of E. coli transketolase was evolved previously with three successive smart libraries, each guided by different structural, bioinformatical or computational methods. Substrate-walking progressively shifted the target acceptor substrate from phosphorylated aldehydes, towards a non-phosphorylated polar aldehyde, a non-polar aliphatic aldehyde, and finally a non-polar aromatic aldehyde. Kinetic evaluations on three benzaldehyde derivatives, suggested that their active-site binding was differentially sensitive to the S385Y mutation. Docking into mutants generated in silico from the wild-type crystal structure was not wholly satisfactory, as errors accumulated with successive mutations, and hampered further smart-library designs. Here we report the crystal structure of the S385Y/D469T/R520Q variant, and molecular docking of three substrates. This now supports our original hypothesis that directed-evolution had generated an evolutionary intermediate with divergent binding modes for the three aromatic aldehydes tested. The new active site contained two binding pockets supporting π-π stacking interactions, sterically separated by the D469T mutation. While 3-formylbenzoic acid (3-FBA) preferred one pocket, and 4-FBA the other, the less well-accepted substrate 3-hydroxybenzaldehyde (3-HBA) was caught in limbo with equal preference for the two pockets. This work highlights the value of obtaining crystal structures of evolved enzyme variants, for continued and reliable use of smart library strategies.


Assuntos
Proteínas de Escherichia coli/química , Transcetolase/química , Substituição de Aminoácidos , Benzaldeídos/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Evolução Molecular Direcionada , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Transcetolase/genética , Transcetolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA