Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063383

RESUMO

Pretreatment of grape pomace seeds with a pulsed electric field (PEF) was applied to improve the extraction yield of cold-pressed grape seed oil. The effects of different PEF conditions, electric field intensities (12.5, 14.0 and 15.6 kV/cm), and durations (15 and 30 min) on the oil chemical composition were also studied. All PEF pretreatments significantly increased the oil yield, flow rate and concentration of total sterols (p < 0.05). In addition, similar trends were observed for total tocochromanols and phenolic compounds, except for PEF pretreatment under the mildest conditions (12.5 kV/cm, 15 min) (p < 0.05). Notably, the application of 15.6 kV/cm for 30 min resulted in the highest relative increase in oil yield and flow rate (29.6% and 56.5%, respectively) and in the concentrations of total tocochromanols, nonflavonoids, and flavonoids (22.1%, 60.2% and 81.5%, respectively). In addition, the highest relative increase in the concentration of total sterols (25.4%) was achieved by applying 12.5 kV/cm for 30 min. The fatty acid composition of the grape seed oil remained largely unaffected by the PEF pretreatments. These results show that PEF pretreatment effectively improves both the yield and the bioactive properties of cold-pressed grape seed oil.

2.
Foods ; 12(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36900502

RESUMO

Varietal thiol concentration in wine is influenced by numerous factors, of which grape variety and winemaking practices are often highlighted as the most important. Therefore, the aim of this work was to study the effects of grape clone and yeast strain (Saccharomyces and non-Saccharomyces) on the varietal thiols concentrations and sensory characteristics of Grasevina (Vitis vinifera L.) white wines. Two grape clones were evaluated (OB-412 and OB-445) along with three different commercial yeast strains (Saccharomyces cerevisiae Lalvin Sensy and Sauvy, and Metschnikowia pulcherrima Flavia). The results showed that the concentration of varietal thiols in Grasevina wines amounted up to a total of 226 ng/L. The clone OB-412 was characterized by its significantly higher concentrations, especially of 3-sulfanylhexanol (3SH) and 3-sulfanylhexyl acetate (3SHA). Moreover, alcoholic fermentation with pure S. cerevisiae Sauvy yeasts generally resulted in higher thiol concentrations, while sequential fermentation involving M. pulcherrima positively affected only the 4-methyl-4-sulfanyl-pentan-2-one (4MSP) concentration. Finally, sensory analysis showed that fermentation with pure S. cerevisiae Sauvy yeast also produced more desirable wines. The results suggest that clonal, and especially yeast strain, selections are important modulators of the aroma and sensory properties of wine.

3.
Food Chem ; 339: 127848, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871302

RESUMO

This work aimed to study long-term impact of micro-oxygenation and/or different aging treatments: (i) high SO2, (ii) high Fe with Cu and (iii) gelatin fining on Plavac mali red wine phenolic and in-mouthfeel sensory development in barrels and furthermore in bottles. Results showed that outcomes of micro-oxygenation strongly depend on aging treatments. High SO2 concentration during aging in barrels and bottles delayed typical phenolic changes and slightly contributed to astringency and lower color intensity, particularly in wine that was not micro-oxygenated. High metal concentrations and gelatin fining promoted intensive polymerization of proanthocyanins and a lower percentage of prodelphinidins after long-term aging in barrels. Also, flavan-3-ol and anthocyanins transformation rates in micro-oxygenated wines of both treatments significantly differed from their controls. Gelatin fining proved to be a very effective treatment for astringency reduction, particularly when combined with micro-oxygenation, but fined wines after long term aging in bottles showed lower color intensity.


Assuntos
Cobre/química , Gelatina/química , Ferro/química , Oxigênio/química , Fenóis/química , Dióxido de Enxofre/química , Vinho/análise , Antocianinas/análise , Antocianinas/química , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Espectrometria de Massas , Fenóis/análise , Espectrofotometria , Fatores de Tempo
4.
Foods ; 9(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752199

RESUMO

The aim of this study was to investigate use of high hydrostatic pressure (HHP) along with different antioxidants (glutathione and SO2) as an alternative method for wine preservation and production of low-SO2 wines. In the first phase of the study, low-SO2, young red and white wines were pressurized at three pressure levels (200, 400 and 600 MPa) for 5, 15 and 25 min at room temperature, and analyzed immediately after treatments. Additionally, for the wine aging experiment, red and white wines with standard-SO2, low-SO2+glutathione and low-SO2 content were treated with HHP treatment (200 MPa/5 min) and stored for 12 months in bottles. Color parameters, phenolic and aroma compounds were determined. The sensory evaluation was also conducted. HHP showed very slight, but statistically significant changes in the chemical composition of both red and white wine right after the treatment, and the main variations observed were related to the different pressures applied. Furthermore, during aging, most of the differences observed in chemical composition of pressurized wines, both red and white, were statistically significant, and greater in wines with a lower content of antioxidants. However, after 12 months of aging, some differences between unpressurized and pressurized samples with standard SO2 content were lost, primarily in aroma compounds for red wine and in color and phenolics for white wine. Additionally, similar values were obtained for mentioned characteristics of red and white wines in pressurized samples with standard SO2 and low SO2+glutathione, indicating that HHP in combination with glutathione and lower doses of SO2 might potentially preserve wine. The sensory analysis confirmed less pronounced changes in the sensory attributes of pressurized wines with higher concentration of antioxidants. Furthermore, the treatments applied had a slightly higher effect on the sensory properties of white wine.

5.
Ultrason Sonochem ; 68: 105194, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32492528

RESUMO

This research aimed to analyze the effects of ultrasound on the quality characteristics of white wine when processed by two different systems, i.e., ultrasonic bath and ultrasonic probe. In this regard, the multivariate statistical analysis and artificial neural network (ANN) techniques were used. Additionally, the efficiency of high power ultrasound (HPU) combined with sulfite and glutathione (GSH) treatments was explored during 18 months of bottle storage. Regarding ultrasonic bath experiment, the higher bath temperature caused the degradation of volatile compounds, precisely esters and higher alcohols, while the ultrasound effect on phenolic composition was much less pronounced. Interestingly, a combination of larger probe diameter and higher ultrasound amplitude showed a milder effect on phenolic and volatile composition in ultrasonic probe experiment. Both, ultrasonic bath and probe experiments did not cause great changes in the color properties. Moreover, implemented ANN models for flavan-3-ols, higher alcohols and esters resulted in the highest prediction values. HPU processing after 18 months of storage did not affect wine color. However, it modified phenolic and volatile composition, with greater effect in wines with lower concentration of antioxidants. In addition, there was no significant difference in the phenolic and volatile composition among sonicated low-sulfite-GSH wine and the one with standard-sulfite content. Therefore, a combined HPU and low-sulfite-GSH treatment might be a promising method for production of low-sulfite wines.


Assuntos
Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Ondas Ultrassônicas , Vinho/análise , Redes Neurais de Computação , Fatores de Tempo
6.
J Agric Food Chem ; 68(11): 3302-3311, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31515992

RESUMO

The aim of this research was to investigate the short- and long-term effects of thermosonication and different physicochemical properties of wine on culturability, viability, and metabolic activity of Brettanomyces bruxellensis yeast. Thermosonication was conducted at 43 °C during 1, 2, and 3 min, while wine variations included several pH, alcohol, and sugar levels. Cell culturability and viability were determined immediately after treatment and during 90 days of storage, while metabolic activity was determined after 90 days of storage. Results showed that, although culturability was not confirmed in dry wines immediately after 3 min of treatment, thermosonication did not result in complete inactivation of the B. bruxellensis population. Herein, the first evidence of a viable but not culturable (VBNC) state of B. bruxellensis after thermosonication exposure was observed. Moreover, thermosonication reduced the production of volatile phenols. Obtained results suggest application of thermosonication for reduction of the B. bruxellensis population only in early stages of wine contamination.


Assuntos
Brettanomyces , Vinho , Microbiologia de Alimentos , Saccharomyces cerevisiae , Dióxido de Enxofre , Vinho/análise
7.
Ultrason Sonochem ; 59: 104725, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31442771

RESUMO

In this study, the effects of both ultrasonic bath and probe treatments on the phenolic, chromatic and aroma composition of young red wine Cabernet Sauvignon were studied and modeled by artificial neural networks (ANNs). Moreover, the effect of high power ultrasound (HPU) along with antioxidants addition (sulfur dioxide and glutathione) was investigated during 6 months of aging in bottles. Lower amplitude and temperature, shorter treatment duration and particularly lower frequency showed a more favorable and milder effect on the chemical composition of wine. In the case of the ultrasonic probe treatment, similar effect was achieved primarily by a larger probe diameter as well as lower amplitude and treatment duration. Selected ANN models showed the best predictions for the chromatic characteristics followed by total phenolics and anthocyanins. The changes induced by HPU treatment after 6 months of aging were mainly detected in the composition of phenolic compounds (both total and individual), where higher concentration of antioxidants (sulfur dioxide and glutathione) slowed down the decrease rate of these compounds during aging. However, HPU treatment did not influence most of the chromatic characteristics and aroma compounds, except lightness and fatty acids. The obtained results indicated that suitable ultrasound treatment might accelerate some aging reactions and shorten the period of wine aging.

8.
Food Technol Biotechnol ; 55(3): 429-437, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29089857

RESUMO

In this study, eight different types of imidazolium-based ionic liquids (ILs) were applied as new solvents in the extraction of flavonoids from grape skin, and compared to the conventional organic solvent extraction that was not reported earlier. The structure of anions, cations and concentration of ILs significantly affected extraction yields. The highest mass fractions of proanthocyanidins and anthocyanins were obtained with 2.5 mol/L of 1-butyl-3-methylimidazolium bromide [C4mim][Br] and 2.5 mol/L of 1-ethyl-3-methylimidazolium bromide [C2mim][Br], respectively. The studied ILs provided an excellent preliminary result in the extraction of anthocyanins. Significantly higher mass fractions of total and all free anthocyanins were extracted with 2.5 mol/L of [C2mim][Br] and 2.5 mol/L of 1-methylimidazolium hydrogen sulfate [mim][HSO4] than with conventional solvent with the exception of anthocyanin-3-O-acetylmonoglucosides in the latter. On the other hand, 2.5 mol/L of [C4mim][Br] and 2.5 mol/L of 1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate [sC4mim][HSO4] showed significantly higher selectivity towards anthocyanin-3-O-acetylmonoglucosides and anthocyanin-3-(6-O-p-coumaroyl)monoglucosides.

9.
Food Technol Biotechnol ; 54(2): 145-155, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27904404

RESUMO

Fruit wines contain a wide range of phenolic compounds with biological effects, but their composition and potential benefits to human health have been studied to the much lesser extent compared to grape wines. The aim of this research is to study the phenolic profile of different types of fruit wines and to evaluate their antioxidant and biological potential. Commercially available fruit wines from blackberry, cherry, raspberry, blackcurrant, strawberry and apple produced in Croatia were analyzed. To the best of our knowledge, this study represents the first comprehensive screening of Croatian fruit wines. The phenolic characterization was performed by spectrophotometry and HPLC-PDA/MS analysis. The antioxidant capacity was determined using ABTS and FRAP assays, while in vitro biological activity was analyzed by the cytotoxicity assay on human breast (MCF-7), colon (CaCo-2) and cervical (HeLa) cancer cell lines. Among the studied fruit wines, blackberry, cherry and blackcurrant wines contained the highest amount of total phenolics, while the last two also contained the highest amount of total anthocyanins. The analysis of individual phenolic compounds showed distinctive phenolic composition of each type of fruit wine, notably as regards anthocyanins. Blackberry, followed by cherry, raspberry and blackcurrant wines also had a significantly higher antioxidant capacity than strawberry and apple wines. Fruit wines inhibited the growth of human cancer cells in vitro in a dose--dependent manner with differing susceptibility among tested cancer cells. Blackberry, cherry, raspberry and blackcurrant wines in the volume ratio of 10 and 20% showed to be the most effective anti-proliferative agents, with higher susceptibility in HeLa and MCF-7 cells than CaCo-2 cells.

10.
Food Chem ; 200: 159-66, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830574

RESUMO

Conventional extraction techniques for plant phenolics are usually associated with high organic solvent consumption and long extraction times. In order to establish an environmentally friendly extraction method for grape skin phenolics, deep eutectic solvents (DES) as a green alternative to conventional solvents coupled with highly efficient microwave-assisted and ultrasound-assisted extraction methods (MAE and UAE, respectively) have been considered. Initially, screening of five different DES for proposed extraction was performed and choline chloride-based DES containing oxalic acid as a hydrogen bond donor with 25% of water was selected as the most promising one, resulting in more effective extraction of grape skin phenolic compounds compared to conventional solvents. Additionally, in our study, UAE proved to be the best extraction method with extraction efficiency superior to both MAE and conventional extraction method. The knowledge acquired in this study will contribute to further DES implementation in extraction of biologically active compounds from various plant sources.


Assuntos
Fenóis/química , Extratos Vegetais/química , Ultrassom/métodos , Vitis/química , Cor , Micro-Ondas , Solventes , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA